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ABSTRACT  

Wildfires of low intensity and severity are part of the natural dynamics of the Mediterranean 
ecosystem. However, the recorded severe wildfires caused by anthropogenic influences 
and climate change have negative, often long lasting, effects on the environment and, in 
particular, on soils. Organic matter is an integral part of the soil and one of the most 
important indicators of soil quality. The changes in soils after a low-severity wildfire are often 
ephemeral and include decreased microbial respiration and enzyme activity, as well as the 
increase of soil pH and soil organic matter (SOM) content. High severity wildfires lead to 
soil degradation, such as volatilization of soil carbon (C), nitrogen (N), phosphorous (P) and 
sulphur (S) - the most vital soil nutrients. However, due to the heterogenous molecular 
nature of SOM it is difficult to draw straightforward conclusions regarding its post-fire 
dynamic and recovery in different environmental conditions.  
The main purpose of the research was to apply soil spectroscopy, remote sensing and 
geostatistic methods in the pedological and climatic conditions of Mediterranean Croatia to 
test and develop an advanced, cost-effective and applicable methodology for monitoring of 
post-fire effects on SOM. The study was conducted in Zadar county, Croatia (44° 05′ N; 15° 
22′ E; 72 m a.s.l.), on approximately 13.5 ha of wildfire affected mixed forest of Quercus 
pubescens Willd. and Juniperus communis L. The severity of the wildfire was medium to 
high, and the soil type was determined as chromic Cambisol. Soil samples were 
georeferenced which allowed for periodic soil sampling at the same microsite every 3 
months. A total of 1080 samples were taken during the 2-year study period. Linear (PLSR) 
and non-linear (ANN) SOM prediction models based on spectral reflectance were 
developed and compared. Furthermore, geostatistical mapping of SOM was performed 
using two different interpolation methods. For univariate interpolation, ordinary kriging (OK) 
was used, and for multivariate interpolation, ordinary cokriging (OCK) was used. The 
covariates for OCK were soil pH, electrical conductivity (EC), and CaCO3 content. 
The results showed that high severity (HS) areas had a 35 to 48% increase in average SOM 
content, while medium severity (MS) areas did not record a significant change compared to 
unburned (C) areas. Spectral reflectance analysis indicated that soil reflectance is greatly 
influenced by changes in SOM content caused by different wildfire severities. Specifically, 
HS samples had the highest average SOM content, and therefore lowest average 
reflectance throughout the study period, whereas C areas had the lowest average SOM 
content causing highest average reflectance. The greatest spectral differences between C, 
MS and HS were found in green/yellow to red (500-700 nm) region, which indicates this 
region carries the majority of information on SOM that could be useful in developing 
universal models for estimating SOM in soils affected by wildfires.   
ANN models generally proved to be superior to PLSR models (PLSR RPD = 1.35 to 2.29; 
ANN RPD = 1.74 to >2.5), thus confirming previous results that learning non-linear ANN 
algorithms are able to correlate complex spectral information with the target variable (SOM 
content), especially in the conditions of complex post-fire SOM dynamics. 
Promising results were achieved in using ANN models and remotely sensed, multispectral 
data provided by ESA Sentinel-2 satellite sensors (Sentinel-2 ANN RPD = 1.48). In the 
future, freely available Sentinel-2 data could significantly reduce operational costs of future 
research. By comparing the accuracy and precision of univariate (OK) with multivariate 
spatial models (OCK), the results showed that univariate spatial models show lower spatial 
dependency than multivariate ones, which was assessed by interpreting nugget/sill ratio of 
the calculated experimental variograms (OKnugget/sill=10-74%, OCKnugget/sill=0.002-37%). 
Results obtained from this research provided the basis for understanding post-fire soil 
processes and the direction of SOM recovery and present the first step towards creation of 
a soil spectral database that will enhance post-fire soil survey in Mediterranean conditions.   
Key words: spectroscopy, remote sensing, wildfire, soil reflectance, soil recovery, neural 
networks, linear modelling, non linear modelling, soil mapping, Sentinel-2 



 

Prostorno-vremenska dinamika organske tvari tla na 
opožarenom zemljištu primjenom spektroskopije i 
daljinskog istraživanja  
 

Požari niskog intenziteta dio su prirodne dinamike mediteranskog ekosustava. Međutim, 
jaki požari uzrokovani antropogenim utjecajima i klimatskim promjenama imaju negativne, 
često dugotrajne učinke na okoliš, a posebice na tla. Organska tvar je sastavni dio i jedan 
od najvažnijih pokazatelja kakvoće tla. Promjene u tlu nakon požara manje jačine često su 
kratkotrajne i uključuju smanjenu mikrobiološku i enzimatsku aktivnost, kao i povećanje pH 
tla i sadržaja organske tvari (eng. SOM) u tlu. Jaki požari dovode do degradacije tla, kao 
što je volatilizacija ugljika (C), dušika (N), fosfora (P) i sumpora (S) - najvažnijih hranjivih 
tvari u tlu. Međutim, zbog heterogene molekularne prirode SOM teško je izvući jednostavne 
zaključke o njenoj dinamici nakon požara i oporavku u različitim okolišnim uvjetima. S 
obzirom na navedeno, iznimno je važno kontinuirano pratiti i stjecati nova saznanja o 
promjenama nakon požara, posebice u slučaju kvalitete tla, kako bi se prilagodili 
promjenjivim uvjetima okoliša i razvili održive prakse gospodarenja koje će ublažiti 
degradaciju tla. Praćenje i modeliranje oporavka okoliša na prirodne katastrofe omogućuje 
nam temeljitu analizu njihovih kratkoročnih, ali i dugoročnih posljedica. 
Daljinska istraživanja u tloznanstvu relativno su novo područje istraživanja s velikim 
potencijalom za praćenje i kartiranje velikih površina. Daljinsko istraživanje tla može se 
provoditi sa zemlje, zraka ili svemira. Zemaljska daljinska istraživanja obično se provode 
pomoću ručnih senzora ili senzora montiranih na vozilo. Daljinska istraživanja iz zraka 
provode se senzorima montiranim u zrakoplovu. Daljinska istraživanja iz svemira provode 
se pomoću satelitskih senzora. Posljednjih godina ispituje se potencijal multispektralnih i 
hiperspektralnih podataka dobivenih putem satelitskih senzora (npr. Sentinel-2, Hyperion) i 
terenske spektroskopije u istraživanju tla, monitoringu i kartiranju, a podaci dobiveni takvim 
senzorima pružaju nam mogućnost analize, točnog predviđanja, klasificiranja i mapiranja 
različitih svojstava tla velikih područja korištenjem geostatističkih metoda. Kartiranje putem 
daljinskih istraživanja ključno je za razumijevanje prostorno-vremenske dinamike svojstava 
tla nakon požara. Do sada u pedološkim i klimatskim uvjetima Sredozemne Hrvatske nije 
provedeno praćenje prostorno-vremenskih promjena kvalitete tla nakon požara. 
Glavna svrha ovog istraživanja je primjena spektroskopije tla, daljinskog istraživanja i 
geostatističkih metoda u pedološkim i klimatskim uvjetima Sredozemne Hrvatske za 
ispitivanje i razvoj napredne, isplative i primjenjive metodologije za praćenje učinaka požara 
na SOM tla. Glavni ciljevi istraživanja su: a) pratiti vremenski i prostorni raspored sadržaja 
organske tvari u tlu nakon požara, b) odrediti odnos spektralne refleksije i sadržaja 
organske tvari u tlu pomoću linearnih i nelinearnih kalibracijskih modela, c) usporediti 
točnost i preciznost hiperspektralnih modela predviđanja SOM usporedbom analitičkih i in-
situ mjerenja te satelitskih slika i d) usporediti točnost i preciznost univarijatnih s 
multivarijatnim prostornim modelima. 
Istraživanje je provedeno u Zadarskoj županiji (44° 05′ N; 15° 22′ E; 72 m n.v.) na približno 
13,5 ha požarom zahvaćene mješovite šume Quercus pubescens Willd. i Juniperus 
communis L. Jačina požara bila je srednja do jaka, a tip tla utvrđen je kao smeđe na 
dolomitu i vapnencu (ili chromic Cambisol prema klasifikaciji WRB, 2015). Uzorci tla 
georeferencirani su što je omogućilo periodično uzorkovanje tla na istoj mikrolokaciji svaka 
3 mjeseca. Tijekom dvogodišnjeg razdoblja istraživanja uzeto je ukupno 1080 uzoraka tla.  
Razvijeni su i uspoređeni linearni (parcijalna regresija najmanjih kvadrata - PLSR) i 
nelinearni (neuralne mreže - ANN) modeli predviđanja SOM temeljeni na podacima 
spektralne refleksije. Spektralni podaci dobiveni su putem spektroskopije tla i iz satelitskih 
snimaka preuzetih neposredno nakon požara. Nadalje, geostatičko kartiranje SOM 
provedeno je pomoću dvije različite metode interpolacije. Za univarijatnu interpolaciju 
korišten je obični kriging (OK), a za multivarijatnu interpolaciju korišten je obični kokriging 
(OCK). Kovarijable za OCK bile su pH tla, elektrovodljivost (EC) i sadržaj CaCO3. 



 

Rezultati su pokazali da je šumski požar visoke jačine (HS) uzrokovao povećanje 
prosječnog sadržaja SOM od 35 do 48%, dok požar srednje jačine (MS) nije uzrokovao 
značajnu promjenu u usporedbi s neizgorenim (C) područjima. Analiza spektralne refleksije 
pokazala je da na refleksiju tla uvelike utječu promjene u sadržaju SOM uzrokovane 
različitim jačinama požara. Konkretno, uzorci HS imali su najviši prosječni sadržaj SOM, a 
time i najmanju prosječnu refleksiju tijekom cijelog razdoblja istraživanja, dok su C uzorci 
imali najniži prosječni sadržaj SOM što je uzrokovalo najveću prosječnu refleksiju. Najveće 
spektralne razlike između C, MS i HS zabilježene su u zeleno/žutom do crvenom (500-700 
nm) elektromagnetskom valnom području, što ukazuje da ovo područje nosi većinu 
informacija o SOM koje bi mogle biti korisne u razvoju univerzalnih modela za procjenu 
SOM u na opožarenim zemljištima. 
ANN modeli pokazali su se općenito uspješnijima od PLSR modela (PLSR RPD = 1,35 do 
2,29; ANN RPD = 1,74 do >2,5), čime se potvrđuju prethodni rezultati da učeći nelinearni 
ANN algoritmi mogu korelirati složene spektralne informacije s ciljnom varijablom (sadržaj 
SOM), posebno u uvjetima složene dinamike SOM nakon požara. 
Obećavajući rezultati postignuti su upotrebom ANN modela i daljinski očitanih 
multispektralnih podataka proizašlih iz obrade satelitskih slika (Sentinel-2 ANN RPD = 
1,48). Besplatno dostupni podaci Sentinela-2 mogli bi značajno smanjiti operativne troškove 
budućih istraživanja. Usporedbom točnosti i preciznosti univarijatnih (OK) s multivarijatnim 
prostornim modelima (OCK), rezultati su pokazali da univarijatni prostorni modeli pokazuju 
manju prostornu povezanost od multivarijatnih, što je procijenjeno interpretacijom omjera 
nugget/sill izračunatih eksperimentalnim variogramima (OKnugget/sill = 10-74%, OCKnugget/sill = 
0,002-37%). 
Rezultati dobiveni ovim istraživanjem dali su osnovu za razumijevanje procesa u tlu nakon 
požara i smjera oporavka organske tvari u tlu, te predstavljaju prvi korak prema stvaranju 
spektralne baze podataka tla koja će poboljšati istraživanje tla nakon požara u 
mediteranskim uvjetima. 
 
Ključne riječi: spektroskopija, daljinska istraživanja, šumski požar, refleksija tla, 
obnavljanje tla, neuronske mreže, linearno modeliranje, nelinearno modeliranje, kartiranje 
tla, Sentinel-2  
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1.INTRODUCTION 

 

Throughout Earth's history, wildfires have been a universal phenomenon and driving force for 

change in terrestrial ecosystems (Vukomanović and Steelman, 2019; Keeley et al., 2011). For 

millennia, most ecosystems have depended on the established fire regime, i.e. – the frequency 

and intensity of wildfire occurrence over a long period of time, to prevent excessive fuel 

accumulation, and decrease the likelihood of larger, more severe fires. Forest fires are known 

to provide many regulatory ecosystem services, such as creating long-term carbon sinks 

during post-fire regeneration (Yue et al., 2016), and regulating water in the ecosystem by 

reducing vegetational water consumption, consequently increasing the availability of 

groundwater (Pausas and Keeley, 2019; Boisramé et al., 2017; Schmerbeck and Fiener, 

2015). Flora and fauna are known to have evolved in parallel with the occurrence of wildfires 

and to have adapted to or even depended on wildfires to complete their reproductive cycles 

(Heim et al., 2022; Jhariya and Raj, 2014; Paula and Pausas, 2006). Moreover, the nutrient 

rich ash produced by wildfires, once incorporated into the soil, promotes the regrowth of young 

plants that benefit from the open, sunny habitats created by wildfires (Pausas and Keeley, 

2019; Pavlek et al., 2017). These benefits are primarily associated with low and moderate-

severity wildfires, which are often part of the established fire regime. 

 

However, increasing problems at the global level such as unsustainable land management 

(land-use change, wetland drainage, lack of forest management) and climate change (more 

frequent weather extremes, higher temperatures, longer droughts) are leading to an increase 

in catastrophic wildfires (Kisić et al., 2023; Ali et al., 2022; Turco et al., 2014). Mediterranean 

ecosystems are one of the most vulnerable areas and are subject to a range of mostly negative 

processes leading to temporary and/or permanent change (Cramer et al., 2018; Ruffault et al., 

2016). Although fires of low intensity and severity are part of the natural dynamics of the 

Mediterranean ecosystem and provide the before mentioned beneficial services, the recorded 

more severe wildfires caused by anthropogenic influences and climate change have negative, 

often long lasting, effects on the environment and, in particular, on soil (Grillakis et al., 2022; 

Pereira et al., 2018; Keeley et al., 2011). High severity wildfires can cause permanent 

environmental change, for example from high-value forests to shrubs, a process which is 

triggered by post-fire soil erosion (Francos et al., 2018a; Sheridan et al., 2018; Verma and 

Jayakumar, 2015). Additionally, long-term changes include disturbances in soil functions 

crucial for the survival of the biosphere, such as reduction of nutrient storage capacity, 

alterations of nutrient cycles, triggering the process of desertification, and modification of 
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organic matter – a key indicator of soil quality (Jiménez-González et al., 2016; Shakesby, 2011; 

DeBano et al., 1998). According to Pereira et al. (2018), the magnitude of changes in the soil 

depends on the components of the ecosystem (water, soil and vegetation type), the 

characteristics of the fire (intensity, severity) and other environmental factors (such as climate 

and geomorphology). 

The coastal part of Croatia is characterised by a Mediterranean climate or Csa - Hot-summer 

Mediterranean under the Köppen-Geiger climate classification with hot and dry summers 

(Kottek et al., 2006). According to the Croatian Fire Brigade's 2022 report, Croatia experienced 

a 12.11% increase in burned area in 2021, with a total of 37,340 hectares burned, compared 

to the average from 2011 to 2020. Additionally, in the Mediterranean region of Croatia, the 

burned area index (the ratio of burned area to the number of fires) increased by 1.34% in the 

same year (Croatian Fire Brigade, 2022). The increase is in accordance with the general 

predictions that the higher temperatures and dryness caused by the variable climatic 

conditions in this area will create more favourable conditions for the emergence and rapid 

spread of forest fires in the future (DHMZ - Croatian Meteorological and Hydrological Service, 

2013). Of course, the occurrence of wildfires is primarily influenced by weather conditions, and 

there have been years with fewer and less severe fires due to increased precipitation during 

the typically dry period between June and August. However, extreme weather is also one of 

the consequences of climate change across the Mediterranean, and it is likely that we will see 

more of the higher temperatures, prolonged drought periods, as well as precipitation extremes 

in the following decades - conditions in which severe environmental degradation is inevitable 

(Ali et al., 2022).  

The negative effects of high severity wildfires on soils often include aggregate stability 

deterioration, and increase in bulk density (Francos et al., 2018b; Fernández et al., 2007). 

Increased soil bulk density can reduce the total soil porosity and permeability, and increase 

overland flow, which makes it easier for precipitation and wind to erode the soil, especially on 

sloped terrains (Carrión-Paladines et al., 2022). Soil erosion can lead to a loss of nutrients and 

a decline in the quality of the soil. The effects of soil depletion and erosion can be long-lasting, 

and in some cases, it can take years for the soil to recover (Francos et al., 2018a). Therefore, 

if not managed properly, wildfires can cause serious damage to the environment. 

Considering the above, it is extremely important to continuously monitor and obtain new 

knowledge about post-fire changes, especially in the case of soil quality, in order to adapt to 

the changing environmental conditions and to develop sustainable management practices that 

will mitigate soil degradation. Monitoring and modelling environmental response to natural 

hazards in space and time allows us to thoroughly analyse their impacts in the short, as well 

as long-term.  
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Remote sensing in soil science has great potential for monitoring and mapping large areas of 

land from a distance. Soil remote sensing can be done from the ground, air, or space. Ground-

based remote sensing is typically done with handheld or vehicle-mounted sensors. Airborne 

remote sensing is done with aircraft-mounted sensors. Spaceborne remote sensing is done 

with satellites. 

In recent years, the potential of multispectral and hyperspectral data obtained via satellite 

sensors (e.g., Sentinel-2, Hyperion) and field spectroscopy has been explored in soil research, 

monitoring, and mapping (Vaudour et al., 2019; Gholizadeh et al., 2018a). The data obtained 

from such sensors provide us the ability to analyse, accurately predict, classify, and map 

various soil properties of large areas using geostatistical methods (Gholizadeh et al., 2018b; 

Shoshany et al., 2013). Mapping via remote sensing is vital for understanding the spatio-

temporal dynamic of post-fire soil properties. So far, monitoring of spatio-temporal changes of 

post-fire soil quality has not been conducted in the pedological and climatic conditions of 

Mediterranean Croatia. The main purpose of the research was to apply soil spectroscopy, 

remote sensing and geostatistic methods in these conditions and test and develop an 

advanced, cost-effective and applicable methodology to provide a continuous quantitative 

assessment of post-fire effects on soil organic matter (SOM). Results obtained from this 

research will provide the basis for understanding post-fire soil processes and the direction of 

SOM recovery, as well as providing the first step towards creation of a soil spectral database 

that will enhance post-fire soil survey in Mediterranean conditions.
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1.1. Hypothesis and objectives of research 

 

Hypothesis: 

 

1. High intensity fires cause a decrease of soil organic matter content in the short term, 

while low to medium intensity fires cause an increase of the soil organic matter content. 

2. Soil spectral reflectance calibration models can precisely predict soil organic matter 

content. 

3. The accuracy of hyperspectral prediction models does not change with decreasing 

spatial and spectral resolution, whereas univariate spatial models show less spatial 

connectivity than multivariate ones. 

 

Objectives: 

 

1. Monitor the temporal and spatial distribution of soil organic matter content after a fire. 

2. Determine the relationship of spectral reflectance and soil organic matter content using 

linear and nonlinear calibration models. 

3. Compare the accuracy and precision of hyperspectral prediction models by comparing 

analytical and in-situ measurements and satellite imagery. 

4. Compare the accuracy and precision of univariate with multivariate spatial models. 
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2.BACKGROUND 

 

2.1. Wildfire impacts on soil organic matter (SOM) 

 

The socio-economic and land-use changes in the Mediterranean region (depopulation, 

abandonment of agricultural land, afforestation with flammable species) and climate change in 

the last decades has led to the increase in the number of catastrophic wildfires (Ferreira et al., 

2022; Pausas et al., 2008). About 300-460 Mha are burned annually on Earth, which is about 

4% of the surface (de la Rosa et al., 2019). Wildfires are a natural occurrence and drivers of 

change in most ecosystems (exceptions are some ecosystems of extreme climatic conditions, 

eg. deserts) (Keeley et al., 2011), which means they alter flora, fauna, and soil significantly.  

Organic matter is an integral part of the soil, which consists of plant and animal detritus in 

various stages of decomposition, humus, microorganisms, meso- and macro-fauna of the soil 

and the products of their metabolism. Soil organic matter (SOM) is one of the most important 

indicators of soil quality - it participates in the circulation and retention of nutrients, improves 

soil structure, retains water, prevents erosion, absorbs and retains pollutants, and represents 

the main source, but also a global carbon (C) sink (FAO, 2020). Namely, soil organic carbon 

(SOC) makes up almost 58% of SOM (Heaton et al., 2016) and about 2/3 of the total C stored 

in the terrestrial ecosystem - about 2400 petagrams (Pg) C at a depth of up to 2 m (for 

comparison, the atmosphere contains about 830 Pg C) (Yousaf et al., 2017). Carbon is the 

central building block of living organisms and a key regulator of the global climate. It is also an 

important element in wildfires because it makes up almost 50% of the dry matter of all forms 

of vegetation (Ho, 1976).  

2.1.1. Impact of wildfire severity on SOM 

 

The effects of wildfire on SOM are highly variable and depend on a number of factors, including 

the intensity and severity of the fire, the type of vegetation that was burned, the pre-fire soil 

conditions, and the post-fire management. The type, intensity and severity of the wildfire 

determine the degree of loss or increase because of the incorporation of partially burned plant 

mass into the soil (González-Pérez et al., 2004). Generally speaking, an increase in SOM was 

recorded in low- and medium-severity fires (Alcañiz et al., 2016; Inbar et al., 2014), and a 

decrease in high-severity fires (Moya et al., 2019), although there are some studies that report 

an increase of SOM even in high severity wildfires (see Table 2.1). 
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The reason for this discrepancy lies in the heterogeneous molecular structure of SOM in 

combination with external environmental factors (fuel type, soil type, wildfire severity etc.).   

According to Cofer et al. (1997), the combustion of biomass can generate various compounds, 

such as carbon monoxide (CO), methane (CH4), and complex hydrocarbons, in addition to 

carbon dioxide (CO2), water (H2O), and minerals. Under the influence of high temperatures, 

this process creates new forms of carbon and alters existing forms, which are then present in 

the resulting ash. Ash created as a direct consequence of wildfires covers the soil surface in 

the immediate post-fire period. Its colour serves as a direct indicator of wildfire severity, in 

addition to the degree of foliage and tree trunks combustion, and aids researchers to classify 

and describe the fire-affected landscape. According to Pereira et al. (2019), black and dark 

grey ash and partial combustion of vegetation indicate low to moderate wildfire severity, while 

white ash and complete combustion of vegetation point to a high wildfire severity. The changes 

in soils after a low-severity wildfire are often ephemeral and include decreased microbial 

respiration and enzyme activity (Dove et al., 2020), as well as the increase of soil pH and SOM 

content (Moya et al, 2019), while high severity wildfires lead to severe soil degradation, such 

as volatilization of essential soil nutrients like soil C, nitrogen (N), phosphorous (P) and sulphur 

(S) - which are crucial for maintaining soil health (Delač et al., 2020; Delač et al., 2021; Hrelja 

et al., 2020; Hebel et al., 2009; Neary et al., 1999).  

Due to the heterogeneous molecular nature of SOM it is difficult to draw straightforward 

conclusions regarding its post-fire dynamic and recovery in different environmental conditions. 

Previous studies stated that the impact of wildfire on SOM content and composition depends 

on temperatures reached, but also on soil properties. For example, soils with a higher 

proportion of clay contain more tightly bound organic C, which is more resistant to thermal 

decomposition (Santín and Doerr, 2019; Xue et al., 2014). Additionally, given that SOM 

combustion generally starts at temperatures above 200 °C, soil moisture can significantly 

impact its speed because it prevents the temperature in the soil from rising above 100 °C until 

all the water evaporates from the matrix (Santín et al., 2016a). Minor changes in organic matter 

begin at temperatures between 100 and 200°C, such as the condensation of volatile 

compounds, and a more significant impact begins at temperatures of 200-300 °C, when 

mineralization and loss of gases and aerosols occur (Santín and Doerr, 2016; González-Pérez 

et al., 2004).  

Although previous research highlights the variability of the impact of fires on different soils (e.g. 

Alcaniz et al., 2018), it is generally considered that wildfires cause loss of soil nutrients through 

volatilization, erosion and leaching following a partial or complete burning of SOM (Agbeshie 

et al., 2022; Jiménez-Pinilla et al., 2016; Shakesby et al., 1993). 
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The recovery of SOM after wildfire is a complex process that is influenced by a number of 

factors. In general, however, it can take years for SOM to recover to its pre-fire levels (Mayer 

et al., 2020; Nave et al., 2011).
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Table 2.1. Summary of recent research displaying the discrepancy of wildfire impact on C 

content 

Location Vegetation Soil type 
Post-fire 
sampling 

date 
Fire severity 

Form of C 
measured 

Observed 
change in 

the soil 
Reference 

Russia 

Juniperus 
excelsa,  

Juniperus 
foetidissima, 

Pistacia 
mutica, Pinus 

brutia var. 
pityusa,  
 Cotinus 

coggygria 

Cambisol 
2 weeks 
post-fire 

 
low 

SOC 

decreased 

Kazeev et 
al. (2022) 

 
moderate 

no change 

 
high increased 

China 
Mixed 

coniferous 
forest 

Light 
textured, 
shallow 

Immediately 
post-fire 

low 

TOC 

no change 

Ping et al. 
(2022) 

moderate increased 

high increased 

Croatia 

Olea 
europaea 

L., grasses 
and maquis 

Cambisol 
Rhodic 

5 days, 3 
months, 6 

months, and 
1 year after 
the wildfire 

moderate 

SOC 

increased 

Šestak et al. 
(2022) 

high increased 

Portugal 

Pinus 
halepensis 

Mill., 
Macrochloa 
tenacissima 
(L) Kunth, 
Quercus 

coccifera L., 
Pistacia 

lentiscus L. 

Aridisols/ 
Lithic 

Haplocalcid
s 

3 years 
post-fire 

low/medium 

SOC 

no change 

Moya et 
al.(2019) medium/hig

h 
decreased 

Poland 
Mixed 

coniferous 
forest 

Podzol 
1 year post-

fire 
not 

discussed 
SOC decreased 

Majder-
łopatka et 
al. (2019) 

Spain 
Pinus pinaster 

ssp. 

Typic 
Haploxerept 

18 years 
post-fire 

low 

SOM 

decreased 

Francos et 
al. (2018a) 

Lithic 
Haploxerept 

high decreased 

Spain 

Pinus 
halepensis 

Miller, Pinus 
nigra Arnold 
and Quercus 

ilex L. 

Fluventic 
Haploxerept 

3 months 
post-fire 

high SOM increased 
Francos et 
al.(2018b) 

Portugal 
Eucalyptus 
globulus L, 

Pinus pinaster 
Leptosols 

2 weeks 
post-fire 

low 

SOC 

decreased 
Otero et al. 

(2015) 
high decreased 

Israel 

Pinus 
halepensis 
and Pinus 

brutia 

Lithic 
Xerorthenth 

1 month 
post-fire 

low/medium SOM increased 
Inbar et 
al.(2014) 
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2.1.2. Impact of vegetation species on SOM 

 

Immediately after a wildfire, there is a decrease in unstable organic compounds and an 

increase in aromatic compounds (i.e. char) resistant to chemical/thermal decomposition 

produced as byproducts of biomass burning and the formation of ash (Bodí et al., 2014). 

However, some studies suggest there is also an increase of unstable compounds in the case 

when there is incorporation of dead but unburnt biomass into the soil (Nocentini et al., 2010; 

Knicker et al., 1996). The key reason for this discrepancy is biomass composition that varies 

in different ecosystems and causes spatially heterogeneous effects on SOM in the small scale 

(Santín et al., 2016b).   

In other words, the amount and chemical nature of the char and ash produced by wildfires vary 

greatly with type of biomass burned, which then greatly influences the soil properties as well, 

once they are incorporated into the soil profile via precipitation (Mastrolonardo et al., 2013). 

For example, some studies have found that biomass with lower lignin content starts burning at 

lower temperatures, and creates less char and more ash than biomass with higher lignin 

content (Soucémarianadin et al., 2013; Keiluweit et al., 2010; Nocentini et al., 2010). 

Combustion of biomass with lower lignin content also usually results in the formation of charred 

material that includes non-aromatic components, such as polysaccharides and N- 

heteroaromatic C derived from peptides, which are more heat resistant (Knicker et al., 1996; 

Nocentini et al., 2010). The lignin content in deciduous species is usually around 18–24%, in 

coniferous species 27–32%, in shrubs 6.5%, and in grasses 7–8% (Khviyuzov et al., 2020; 

Rahman et al., 2013; Heitner et al., 2010; Sosulski et al., 1960). Additionally, the combustion 

of grass plant material, rich in N, yields higher ash content than woody material (Nocentini et 

al., 2010; Knicker et al., 1996). Therefore, the type of biomass burned affects directly the post-

wildfire SOM changes. Santín et al. (2012) found significant differences in the abundance of 

charred biomass in rainforest and eucalypt forests. Mastrolonardo et al. (2013) and McBeath 

et al. (2013) also observed that high variability in formation, amount and chemical properties 

of the charred biomass and ash depends on various differences in vegetation types and their 

composition. 
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2.1.3. Impact of time-after-fire on SOM 

 

The recovery of soil organic matter after wildfire is a complex process that is influenced by a 

number of factors, such as wildfire severity, post-fire soil erosion processes, weather 

conditions and climate, or vegetation recovery. In general, however, it can take more than 10 

years for SOM to recover to its pre-fire levels (Orumaa et al., 2022; Parro et al., 2019). On the 

other hand, other studies have shown that SOM can recover much faster, within one to two 

years (Bonilla et al., 2017). 

Francos et al. (2018a) conducted a study of the impact of high severity wildfire on total C in 

the soil, and monitored its immediate increase in the soil after the wildfire, mostly due to the 

incorporation of ash, and a later (several years after the fire) decrease to a level lower than the 

control due to post-fire erosion and increased mineralization of SOM. However, 18 years after 

the fire, total C levels did not return to pre-fire levels, which was most likely related to the 

incomplete recovery of vegetation. The same study, when applied to fires of lower severity, 

confirmed only an immediate increase in total C after the fire (Francos et al., 2018a), and multi-

year studies such as the one conducted by Alcaniz et al. (2018), revealed no significant 

changes in total C levels over time. 

Given that SOM is one of the most important indicators of soil quality, an important reservoir 

of C at the global level, and about 4% of the Earth's surface suffers from the effects of fire 

annually, understanding post-fire soil processes is crucial for sustainable land management 

on fire-affected areas.
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2.2. Wildfire impacts on soil chemical properties 

 

This section deals mainly with the impacts of wildfire on soil pH and electrical conductivity (EC), 

as they represent important indicators of soil quality and play an important role in the soil 

capacity for performing environmental functions, as well as supporting agricultural production 

(Arshad and Martin, 2002). It also deals with the impact of wildfire on CaCO3 accumulation, as 

it can be an important indicator of temperatures reached during the wildfire and help 

characterise its severity (Francos et al., 2019; Dlapa et al., 2013).  

2.2.1. Impact of wildfire severity and time-after-fire on soil pH, EC, and CaCO3 

 

Ash is an alkaline material characterised by high EC, and contains high levels of sulphates, 

oxides and carbonates of Ca, Mg and K, as well as other elements such as Al, Fe, Cu, Mn, Ni 

and Zn (Doufexi et al., 2022; Hrelja et al., 2020; Pereira et al., 2019). It is incorporated into the 

soil profile after the first precipitation event, and as water percolates through the ash, large 

quantities of base cations are leached into the soil, therefore causing changes in post-fire soil 

nutrient status, pH, and EC in the short and long-term (Pereira et al., 2019). In the immediate 

post-fire timeframe both soil pH and EC increase due to incorporation of ash into the soil, and 

the increased pH promotes the solubility of Ca, Mg, Na and K cations as a consequence of 

mineralization process, which can further change soil chemistry (Francos et al., 2018a; Pereira 

et al., 2015).  

 

Soil pH and EC values are elevated in the short period and up to three years after the wildfire 

(Moya et al., 2019), mainly because of decreased competition for nutrients, which is dependent 

on the dynamic of vegetation recovery (Stavi, 2019). Additionally, the increase of both soil pH 

and EC was noted as ephemeral especially in low-severity wildfires that cause less disturbance 

in the environment, as reported by Pereira et al. (2017) and Zavala et al. (2014). According to 

Henig-Sever et al. (2001), higher temperatures achieved during moderate and high severity 

wildfires facilitate the increase of ash pH and the solubility of major cations, which can prolong 

the high pH soil status in the post-fire period. When severe wildfire occurs, it often causes 

serious and prolonged soil degradation, i.e. disruption of the stability of soil aggregates that 

leads to erosion and runoff on slopes after the fire, as well as volatilization of soil nutrients due 

to extreme temperatures during the fire (Pereira et al., 2018; Jordán et al., 2014; Jordán et al., 

2011; Hebel et al., 2009). 
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In soils affected by low severity wildfires, the main changes are decreases in soil microbial 

community and enzyme activity, accompanied by increases in soil pH, EC and nutrient 

concentrations (Dove et al., 2020; Pereira et al., 2018).  

 

According to Úbeda et al. (2009) calcite is one of the major inorganic constituents of ash that 

forms between 350 and 550 °C. Goforth et al. (2005) observed high CaCO3 content in ash of 

lighter colours, originating from completely combusted organic matter, and concluded it 

contains more alkaline oxides able to form carbonates, unlike ash of darker colour which 

indicates the presence of organic C originating from incomplete combustion of organic matter. 

According to Ulery et al. (1993) the alkaline oxides in white ash produced by wildfires of a 

higher severity react with water vapour and CO2 from the atmosphere and form carbonates 

and hydroxides over time. According to Dlapa et al. (2015), one of the hypotheses considering 

the origin of CaCO3 in post-fire soil is the transformation of weatherable minerals into calcite 

during the burning process in high temperatures (>400°C). At temperatures above 580 °C the 

amount of carbonates decreases in favour of oxides, as CaCO3 dissociates to CaO, as reported 

by Bodí et al. (2014). From the available literature, it would appear that CaCO3 forms during 

high severity wildfires and is transformed over time into hydroxides in reaction with atmospheric 

water vapour and CO2 due to its hydrophilic nature, as was observed by Dlapa et al. (2015), 

Pereira et al. (2012), Plante et al. (2009), and Echigo et al. (2005).  

2.2.2. Impact of vegetation species on soil pH, EC, and CaCO3 

Vegetation species play a significant role in shaping soil pH, EC, and CaCO3 dynamics. Certain 

coniferous trees (e.g., Pinus, Piceoideae) and heathland plants release organic acids, lowering 

pH over time, while some deciduous trees (e.g., Populus, Quercus) and grassland plants (e.g., 

Poaceae) release alkaline compounds, elevating pH (Dijkstra et al., 2001; Kesselmeier et al., 

1997; Jalal and Read, 1983). Factors such as litter quality, root exudates, and nutrient uptake 

further modulate soil pH and EC by releasing soluble ions (Tavakkoli et al., 2015), enhancing 

ion solubility through root exudates (Lin et al., 2022), and resulting in the accumulation of ions 

by salt-tolerant species (Munns, 2002). Furthermore, water use patterns and organic matter 

input contribute to dynamic changes in soil EC (Wong et al., 2009; Mmolawa and Or, 2000). 

Similarly, in CaCO3 dynamics, vegetation's root activity, organic matter input, and interactions 

with soil organisms influence CaCO3 presence. Root exudates can dissolve or promote CaCO3 

formation (Ma et al., 2022), while plant-microbe interactions contribute to intricate changes in 

soil CaCO3 content (Singh et al., 2020; Lambers et al., 2009). Local factors and feedback 

mechanisms add complexity to these interactions. 
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 As wildfires occur, the combined effects of vegetation and fire severity shape the subsequent 

changes in soil pH, EC, and CaCO3 content. Vegetation's role in post-fire recovery, nutrient 

cycling, and organic matter accumulation can either amplify or mitigate the impacts of wildfire 

on these soil parameters (Verma and Jayakumar, 2012; Neary et al., 1999). Studying these 

interactions with respect to vegetation species provides valuable insights into the complex 

dynamics of soil quality in ecosystems affected by wildfire. 
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2.3. Spectroscopy and remote sensing techniques for soil monitoring in 

post-fire period  

 

2.3.1. Basic principles of soil spectroscopy 

 

The main idea behind remote sensing research lies in the fact that information about objects 

of interest can be obtained by analysing data acquired via instruments that are not in close 

contact with the objects themselves (Lillesand et al., 2004). Soil spectroscopy in this context 

studies remotely sensed data measured proximally (usually up to 2 m away from the target) 

in-situ or in a controlled laboratory environment.    

Spectroscopy is defined as the study of the interaction between matter and electromagnetic 

radiation. Electromagnetic (EM) radiation is a form of energy that travels through the air, or 

any other medium, in the form of a wave, and can be classified in terms of wavelength or 

frequency, which can be described in a following equation:  

V = c / λ 

where V is frequency (in seconds), c is the speed of light (3 x 108 ms-1) and λ is wavelength (in 

metres). Usually in VNIR spectroscopy, wavelength is expressed in nanometers (nm).  

Additionally, the energy associated with EM radiation can be defined in the following equation: 

E = h × V 

where E is energy (in Joules), h is Planck constant (6.62 x 10-34 Js), and V is frequency (in 

seconds).  

From these equations it is clear that frequency and wavelength are inversely related, and that 

radiation with shorter wavelength has higher frequency (and energy).  

Visible and near-infrared radiation comprises only a small part of the EM spectrum that 

includes other forms of radiation, such as ultraviolet (UV), x-rays and gamma rays, as shown 

in Figure 2.1.
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Figure 2.1. Electromagnetic (EM) spectrum and approximate visible colour ranges in 

nanometers (nm). Adapted according to: Bruno and Svoronos (2005) and National Institute of 

Standards and Technology (https://www.nist.gov) 

 

When radiation interacts with matter, the processes of absorption, reflection, transmission, or 

emission of radiation can occur. When radiation interacts with a given matrix (or sample), the 

amount of radiation absorbed is the difference between the incident radiation and the 

transmitted radiation, and is expressed as either transmittance or absorbance, as expressed 

in the following equations: 

T = (I / Io) × 100  

or  

A = -logT , 

where T is transmittance, A is absorbance, Io is incident radiation and I is transmitted radiation.  

 

Spectroradiometer is an instrument that generates EM radiation of a specific part of the 

spectrum and measures transmittance and absorbance of a given matrix. As the energy 

is inversely related to wavelength, the resulting spectrum produces a characteristic shape 

unique to each matrix type that can be used to further analyse the matrix properties (Miller, 

2001). Figure 2.2 shows the typical spectral response of three different matrix types, soil, water 

and vegetation in the range from 500 to 2500 nm. Within this spectral region, specific zones of 

EM absorption by these matrices are known, and they are the result of interactions with the 



 

16 

 

vibrations of the chemical bonds on an atomic level. Because an EM wave is a form of energy, 

its absorption by the matrix causes the energy content of the molecules to increase.  

 

 

 

Figure 2.2. Typical spectral response characteristics of soil, water and vegetation; source: 

National Institute of Standards and Technology (downloaded from: https://www.nist.gov; 

05.09.2022.)  

 

Moreover, the literature refers to this type of spectroscopy as hyperspectral, because 

spectroradiometer instruments measure and record reflectance of a given matrix in a 

continuous spectral range. Contrary to hyperspectral, multispectral instruments measure and 

record a smaller number of wavelengths, usually referred to as bands. Multispectral imagery 

generally refers to 3 to 10 bands. More information on multispectral instruments is given in 

chapter 2.3.4. 

 

2.3.2. Soil spectroscopy for SOM research in post-fire period 

 

Soil spectroscopy is recognized as a fast, non-destructive and simple analytical method, and 

a tool for comprehensive soil research, which enables the simultaneous evaluation of many 

soil properties using hyperspectral data, multivariate statistical approaches and chemometric 

methods (Zovko et al., 2018; Viscarra Rossel et al., 2006).  

In recent decades, the use of remote sensing data to monitor the recovery of SOM after 

wildfires has increased. This is due to the advantages of remote sensing, as well as the 

advances in technology. The development of new technology such as diffuse visible, near-

infrared and shortwave-infrared (VNIR-SWIR) soil spectroscopy, allowed researchers to gather 

additional soil data and form complex databases whose information can be used to improve 

modelling and prediction of different soil properties, including organic matter (Rosero-Vlasova 

https://www.nist.gov/
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et al., 2018; Makhamreh, 2006). VNIR-SWIR spectroscopy is a type of remote sensing that 

uses visible (V) and near-infrared (NIR), as well as short-wave infrared (SWIR) light, to 

measure the reflectance of the soil. The reflectance of the soil is dominantly affected by the 

amount of SOM in the soil, in addition to other soil properties that can affect reflectance, such 

as soil texture and moisture (Stenberg et al., 2010). For example, coarse-textured soils tend 

to reflect more light than fine-textured soils, because larger soil particles have larger pore 

spaces and less surface area per unit of soil, which reduces the amount of light that is absorbed 

and increases the amount that is reflected, while wet soils reflect less light than dry soils 

because water absorbs more light than soil particles (González-Teruel et al., 2020; Stenberg 

et al., 2010).  

In general, by using spectroscopic methods the interaction of matter and EM radiation is 

detected and interpreted, and the intensity of the emitted, absorbed or scattered radiation is 

usually measured depending on its wavelength, i.e. frequency (Stenberg et al., 2010). In the 

last few decades, VNIR-SWIR calibrations have been used mostly to determine total C and 

SOC, as well as the content of clay and total N in soil (Šestak et al., 2022; Semella et al, 2022; 

dos Santos et. al., 2020; Adeline et al., 2017; Stenberg et al., 2010).  

Soils with a high SOM content tend to be darker in colour and have a lower reflectance than 

soils with a low SOM content, and according to Baumgardner et al. (1986), organic matter is 

the one of the most important property to explain reflectance differences in the VNIR spectral 

region, which arise due to stretching and bending of organic covalent bonds. This information 

can be used to monitor the recovery of SOM after wildfire. 

According to Cozzolino and Morón (2006) the visible part of the spectrum (400-700 nm) affects 

C calibrations the most, because SOM reduces reflectance in the visible region. Additionally, 

in the NIR region (> 700 nm), wavelengths around 960 and 1100 nm tend to be absorbed by 

SOM (Francos et al., 2021; Daniel et al., 2004). Particularly the 690-700 and 788 nm impact 

calibrations of clay and silt bound C, while 700-800 nm region is thought to be associated with 

humic compounds derived from decomposition of SOM (Stevens et al., 2013; Cozzolino and 

Morón., 2006; Fidêncio et al., 2002; Daughtry, 2001). Moreover, according to Francos et al. 

(2021), the modelling of organic matter in soils with low content (< 0.6%) may lead to difficulties 

in its estimation. To improve the robustness of such models they propose conducting research 

by using samples at various SOM decomposition stages.  

Overall, the use of laboratory spectroscopy in the VNIR-SWIR spectrum in combination with 

multivariate statistical methods such as PLSR has proven to be a precise technique for 

estimating not just soil C, but various other soil properties as well (Viscarra Rossel et al., 2006; 

Croft et al., 2012). Most commonly used chemometric models are principal component 

analysis (PCA), stepwise multiple linear regression (SMLR), partial least squares regression 

(PLSR), principal component regression (PCR), and artificial neural networks (ANN) 
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(Mohamed et al., 2018). Viscarra Rossel and Behrens (2010) compared different modelling 

algorithms to determine soil organic carbon content and found that significant wavelength 

selection techniques gave the best predictions if the ANN model based on the VNIR-SWIR 

(350–2500 nm) spectrum was used, mainly because ANNs can model complex nonlinear 

interactions in the data.  

 

2.3.3. Effect of soil moisture on predictive SOM modelling 

 

In addition to measuring SOM by spectroscopy under controlled laboratory conditions, field 

spectroscopy can also be used as a rapid method for monitoring changes in SOM, with a slight 

decrease in accuracy compared to laboratory measurements (Stevens et al., 2008). The 

decrease in accuracy in field measurements is caused mostly by soil conditions such as 

surface roughness, compaction level, temperature, and most importantly, soil moisture (Ben-

Dor et al., 2008a). Soil moisture drastically changes the refractive properties of soil.  

Generally, a decrease of soil reflectance is observed with increased soil moisture, which is due 

to water-specific absorption characteristics defined by the Lambert-Beer law (Lobell and Asner, 

2002). According to Oxford Reference (2022), the Lambert-Beer law demonstrates how “(…) 

the intensity of light (or any other form of electromagnetic radiation) passing through a sample 

diminishes exponentially with the concentration and the thickness of the sample (for a given 

wave number)” and expresses it through a formula: 

log(I/I0)= – ϵ[J]l , 

where ϵ is the molar absorption coefficient, Io is incident radiation and I is transmitted radiation, 

and [J] is the molar concentration of the matrix. 

 

Furthermore, EM radiation is more intensely scattered if it reaches the dry soil than wet soil 

particles. This is explained by the difference in refractive index (nλ) between the mineral soil 

particles and the air or water surrounding them (Somers et al., 2010). In dry soils (nλsoil ~ 1.5) 

the particles are surrounded by air (nλair ~ 1.0), and the difference in refractive indexes is 

relatively larger than if the particles are surrounded by water (nλwater ~ 1.33), effectively causing 

decreased scattering of incident light as the soil moisture increases (Bach and Mauser, 1994). 

Additionally, water absorption is detectable in the soil reflectance curve in the SWIR region of 

the spectrum (typically around 1400 and 1900 nm), and is marginal in the VNIR region (Figure 

2.3). Therefore, if the SWIR region of the spectrum is omitted, and the rest of the spectrum is 

preserved, a successful prediction of SOM can still be expected because the VNIR region is 

the most important region for C calibrations. 
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Figure 2.3. Soil reflectance curves as a function of water content, (a) 5%, (b) 20%, and 

(c) 40% water content. Adapted according to: Ben-dor et al., 2008b and Stoner and 

Baumgardner, 1981 

 

2.3.4. The potential of remote sensing in research of post-fire SOM 

 

The usual methods of studying post-fire spatio-temporal variability of SOM is traditionally done 

via extensive soil sampling, coupled with laboratory wet chemical methods, such as the 

Walkley-Black and the dry combustion method (Walkley and Black, 1934; HRN ISO 10694). 

These methods are time-consuming and labour-intensive, and require the use of expensive 

laboratory equipment. In addition, these methods can only be used to measure SOM content 

and other soil properties of a limited number of samples. Considering the limitations of 

traditional methods, there are many advantages of using hyperspectral soil reflectance data 

obtained proximally, such as simultaneous measurements of various soil properties of interest 

in a short period of time, which facilitate monitoring of the soil status and considerably reduce 

costs. The above-mentioned method uses hundreds of continuous spectral bands with high 

resolution, however for spatially extensive and frequent soil mapping campaigns such methods 

are not economically sustainable (Gholizadeh et al., 2018a).  

By utilising multispectral data from satellite sensors, it is possible to achieve economically 

feasible extensive and continuous soil mapping objectives. As already mentioned in chapter 

2.3.1., multispectral instruments measure and record a smaller number of wavelengths, usually 

referred to as bands (Figure 2.4).  
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Figure 2.4. The difference between multispectral and hyperspectral sensors; source: 

GISGeography (downloaded from: https://gisgeography.com; 11.11.2022)   

 

The acquired data provides information at a planetary scale and can be used, modified and 

adapted by users interested in environmental monitoring, such as crop growth, land use, 

disaster risk assessment, and urban development (Tarpanelli et al., 2022; Krtalić et al., 2021; 

Varghese et al., 2021; Hunt et al., 2019; Novelli et al., 2019; Pesaresi et al., 2016). 

 

This information can also be used to monitor the recovery of SOM and other soil properties 

after wildfire. Furthermore, it can be used in monitoring the effects of wildfire in difficult-to-

access areas. This is important because the effects of wildfire can be more severe in remote 

areas. Finally, spaceborne sensors can be used to measure the post-fire recovery over time. 

This is important because the recovery of SOM after wildfire can take years (see chapter 2.1.). 

Therefore, the main advantages of multispectral spaceborn over proximal hyperspectral 

sensors are the possibility of monitoring of the soil status on a regional and global scale, high 

revisit time, data reduction and rationalisation of costs.  

In the recent years, multispectral data provided by Sentinel-2 mission has successfully been 

used in wildfire detection and severity assessment, modelling post-fire SOM, as well as post-

fire vegetation recovery with great accuracy of up to 95% (Liu et al., 2022a; De Simone et al., 

2020; Lasaponara et al., 2020; Rosero-Vlasova et al., 2018).  

However, spaceborne sensors such as the one equipped on Sentinel-2 have the ability to 

obtain data on various soil properties on a global scale in a short period of time, provided the 

images are cloud-free and obtained when the soil is bare. Specifically, Sentinel-2 carries an 

optical sensor that records the reflectance of smaller λ that cannot penetrate the objects closest 

to the sensor, such as atmospheric obstacles (eg. clouds) or, in their absence, surface 

obstacles (eg. layer of vegetation). This prevents data collection of the soil pixels, unless the 

images are free of clouds and vegetation. Radar sensors record data obtained via scattering 
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of larger λ (in the microwave spectrum) capable of penetrating such obstacles. For example, 

Sentinel-1 mission is equipped with a synthetic aperture radar (SAR) instrument that records 

EM waves in the so called C-band almost entirely unaffected by atmospheric changes, whilst 

Sentinel-2 optical sensor is much more influenced by atmospheric water vapour (for more 

information see Plank, 2014). This major restricting factor of Sentinel-2 unables us to 

effectively monitor the long-term post-fire soil status considering that vegetation regrowth will 

take place at some point in the future, unabling the acquisition of bare soil pixels from such 

images. 

Luckily, in recent years researchers have successfully fused data obtained from multiple 

sensor types in order to enhance the retrieval of various soil property data. For example, 

Amazirh et al. (2018) combined Sentinel-1 microwave and Landsat-7/8 VNIR-SWIR data to 

reduce RMSE in soil moisture calibration models in a semi-arid region in Morocco from 

0.16 m3 m−3 (Sentinel-1 only) to 0.03 m3 m−3 (combined Sentinel-1 and Landsat-7/8). 

Arjasakusuma et al. (2022) combined Sentinel-1 and Sentinel-2 data to successfully improve 

mapping of magnitude and impacts of 2019's fire events in South Sumatra Province, Indonesia, 

and demonstrated the combination yielded the best accuracy of classification of burned areas 

ranging from 91.8% to 95.8%.
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2.4. Geostatistical methods of SOM monitoring 

 

Geostatistics is the application of statistics that focuses on the analysis and interpretation of 

spatial data, emphasising the incorporation of spatial relationships and variability into statistical 

models (Li and Heap, 2008). It is used to estimate the values of parameters at unobserved 

locations. In other words, geostatistical methods can be used to interpolate values at 

unsampled locations, and describe and measure spatial continuity inherent in natural 

phenomena through spatial interpolation. This greatly improves the understanding of the 

underlying patterns and processes of soil degradation, often induced by intensive agricultural 

practices but also environmental hazards, such as wildfires (Brevik et al., 2016).  

Spatial patterns of soil properties are observed using the experimental semivariograms that 

depict the spatial autocorrelation of the measured sample points which can be described in the 

following formula: 

𝑦(ℎ) =
1

2𝑁(ℎ)
∑𝑁(ℎ)

𝑖=1 [𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + ℎ)]2 , 

 

where 𝑦(ℎ) is the semivariance at a given distance ℎ, 𝑍(𝑥𝑖) is the value of the variable 𝑍 at 

pont 𝑥𝑖, and 𝑁(ℎ) is the number of pairs of sample points separated by the lag distance ℎ 

(Isaaks and Srivastava, 1989).  

The semivariogram has certain characteristics that are commonly used to describe it: the 

range, sill and nugget (Figure 2.5). The distance where the model first flattens out is known as 

the range, showing at which distance ℎ the measured points are spatially autocorrelated.  

 

 

Figure 2.5. Semivariogram example. Adapted according to: Biswas and Cheng, 2013 
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Theoretically, at zero distance the semivariogram value is 0. However, the semivariogram 

often exhibits a nugget effect, which is attributed to spatial variations observed at distances 

smaller than the sampling interval and/or measurement errors (Shukla et al., 2020). Therefore, 

variations of the target variable at distances smaller than the sampling distances will appear 

as part of the nugget effect. Furthermore, in some cases, due to large small-scale variability of 

the target variable and insufficient sampling intensity, a phenomenon known as pure nugget 

effect could appear. The consequence of the pure nugget effect is a flat surface 

semivariogram, which indicates total lack of spatial continuity which disables further 

interpolations (Shukla et al., 2020). In terms of research, the presence of a pure nugget effect 

may suggest that additional sampling is needed at smaller scales in order to fully capture the 

variability of the target variable. This could involve increasing the density of sampling points or 

using higher resolution measurements to capture spatial variation at smaller scales 

(Goovarets, 1997).  

Finally, the sill is the value that the semivariogram model attains at the range (the value on the 

y-axis), and partial sill (PSill) is the sill minus the nugget. The spatial dependence of the soil 

properties is usually evaluated using nugget to sill ratio. According to Cambardella et al. (1994), 

if the ratio is <25% the variable has strong, between 25% and 75% moderate, and if it is >75% 

the variable has a weak spatial dependence.  

Moreover, spatial variation is often not the same in all directions. This spatial behaviour is 

known as anisotropy, and such models reach the sill more rapidly in some directions than 

others, as opposed to isotropic models that reach the sill in all directions simultaneously 

(Spiliopoulos et al., 2011). Anisotropy is a common phenomenon observed in nature, where 

the spatial variability of a property or phenomenon differs depending on the direction or 

orientation in which it is measured. There are several reasons why anisotropy may occur in 

nature, such as human activity, geological and biological processes. Biological systems such 

as plant roots can create anisotropic patterns in soil properties by altering the structure and 

composition of the soil in different directions, while human activities such as land use changes, 

infrastructure development, and pollution can also create anisotropic patterns in environmental 

properties by altering the landscape in different ways (Germer and Braun, 2015; Peng and 

Horn, 2008). 

Wildfires can also alter the structure and composition of soils in several ways, leading to 

directional variations in soil properties (Srivastava et al., 2018; Lorente et al., 2013). For 

example, by breaking down soil aggregates and creating soil crusts, the anisotropic patterns 

in soil porosity, water infiltration, and nutrient availability could occur (Srivastava et al., 2018; 

Widomski et al., 2013), Additionally, wildfires can cause rapid decomposition of SOM, leading 

to directional variations in its contents, as well as soil microbial activity (Lorente et al., 2013). 
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Anisotropy can have a significant impact on the way in which these phenomena are modelled, 

both in terms of the accuracy of the models and the computational efficiency, and should be 

taken into account in geostatistical modelling. With the usage of anisotropic variograms, which 

take into account the directional dependence of the variance of the variable being modelled, 

the accuracy of the chosen interpolation method can be greatly improved, as demonstrated by 

Oliveira et al. (2022), Zhang et al. (2012) and Ecker and Gelfand (2003). 

 

One of the most widely used spatial interpolation methods for estimating soil properties is 

kriging (Webster and Oliver, 2007). Kriging is a linear unbiased predictor that covers a range 

of least-squares methods with great predictive power that is able to minimise the estimation 

error variation (Worsham et al., 2010). According to Webster and Oliver (2007), ordinary kriging 

(OK) is the most used type of kriging. It predicts the values of unknown points by calculating 

weights of the surrounding known values, and it requires a dense sampling grid to model local 

variations of soil properties (Bodaghabadi, 2018). Kriging methods have been successfully 

used in the past to model and map different soil properties, such as SOM (Rahmani et al., 

2022; Hu et al., 2019; Bogunović et al., 2017;), soil pH (Armanto et al., 2022; Zhang et al., 

2022; Bogunović et al., 2014), soil EC (Sahbeni̇ and Székely, 2022; Samieifard et al., 2021; 

Zare et al., 2021) and many other soil properties of interest, such as plant available phosphorus 

(P) and potassium (K) (Kazmierczak et al., 2022; Behera et al., 2016). 

 

Because SOM can be highly spatially variable, often the use of auxiliary data is used to improve 

SOM predictions at unsampled locations (Pouladi et al. 2019). The method that incorporates 

auxiliary data, also known as ordinary cokriging (OCK) assumes the existence of 

coregionalization, as well as inter-variable correlation between auxiliary variables (covariates) 

and the target variable (Mirzaee et al., 2016). According to Webster and Oliver (2007) it has 

proven useful when soil properties that are cheaper to measure (such as soil pH or EC) or 

obtain (such as freely available remotely sensed data) can be used to predict other soil 

properties that are more expensive to measure (such as SOM). Models like OCK often display 

a smaller spatial error and a stronger interdependence of the collected spatial data. The use 

of auxiliary data has been studied extensively in recent research. For example, Pouladi et al., 

(2019) used spectral indices (such as NDVI - Normalised Difference Vegetation Index and 

SAVI - Soil-Adjusted Vegetation Index) derived from freely available remotely sensed data as 

covariates to improve SOM predictions in the Jutland peninsula in Denmark. Similarly, 

Gholizadeh et al. (2018b) used 18 different spectral indices derived from remotely sensed data 

(via laboratory spectroradiometer measurements and Sentinel-2 data retrieval) to successfully 

improve mapping of SOC in different agricultural regions of the Czech Republic. Furthermore, 

Adhikari and Hartemink (2017) and Martinez et al. (2009) found soil EC as auxiliary data useful 
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for the spatial estimation of SOC in Central Sands, Wisconsin and in southwest Spain, 

respectively. Moreover, Jiang et al. (2022) conclude that quantitative soil variables as 

covariates have a more significant impact on the final interpolations than environmental 

variables (such as elevation, precipitation etc.).  

Recent research is also implementing the use of auxiliary data and more complex geostatistical 

methods in an effort to improve land management strategies and mitigate risks and impact of 

natural disasters, including wildfires. For example, Lin et al. (2021) used OCK for deriving a 

reliable map of surface fuel loading in north central Taiwan, similar to Bright et al. (2022) who 

found random forest (RF), a multivariate method that is often compared to advanced 

multivariate cokriging (Hengl et al., 2018) useful for fuel load mapping on the Kaibab Plateau 

in northern Arizona, USA. However, research implementing such advanced geostatistic 

techniques in the research of wildfire impacts of soil properties is still scarce (Efthimiou et al., 

2020; Dindaroglu et al. 2021). 

In conclusion, although spatial mapping of SOM has been frequently investigated, space-time 

dynamics and mapping of post-fire SOM via more complex geostatistical techniques that 

implement the use of auxiliary data is not yet widely represented in international literature. 

Therefore, one of the objectives of this study is to compare the accuracy and precision of 

univariate (OK) with multivariate (OCK) spatial models in mapping SOM in the two-year post-

fire period, which will provide valuable insights in the post-fire direction of SOM recovery in the 

Mediterranean environment.  
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3. MATERIALS AND METHODS 

 

3.1. Location and climate conditions  

 

The study was conducted in Zadar County, Croatia (44° 05’ N; 15° 22’ E; 72 m a.s.l). The study 

area was located within a 2 km radius of Zadar airport. The climate is Mediterranean (Csa) 

according to the Köppen-Geiger classification (Kottek et al., 2006) with an average annual 

temperature of 14.9 °C and precipitation of 879.2 mm (Figure 3.1). Most of the vegetation in 

the area consists of Quercus pubescens Willd., Pinus halpensis Mill., Pinus pinaster Ait., Pinus 

pinea L. and Juniperus communis L. The soil type is chromic Cambisol (IUSS Working group 

WRB, 2015). The soil texture is silt loam (USDA soil texture classification system). These soils 

are characterised by their stable aggregate structure, which allows high permeability and good 

drainage, as well as high content of weatherable minerals, such as feldspars and 

ferromagnesians (Husnjak, 2014; Chesworth et al., 2008). The general soil properties of the 

studied area are shown in Table 3.1. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Meteorological data of the study location based on the 30-year average.  

Source: Zaninović et al., 2008 

 

Table 3.1. General soil properties (0-10 cm) of the study area 

Mechanical composition  pH SOM EC CaCO3 

Sand (%) Silt (%) Clay (%) (-log[H+])  (%)  (μS/cm) (%) 

22.26 55.4 22.34 6.5 3.2 2.0 1.90 
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3.2. Experimental design 

 

The wildfire affected approximately 13.5 ha of a mixed forest of Quercus pubescens Willd. and 

Juniperus communis L. on 15th August 2019. The severity of the fire was medium to high, as 

determined by visual inspection of burned vegetation and ash characteristics (Pereira et al., 

2018). The experimental set-up was established according to the characteristics of the burned 

area, following the methodology described in Pereira et al. (2018): (I) - three categories of 

sampling areas were defined; C – control (unaffected by fire); MS – medium severity (where 

foliage and tree trunks were partially burned and soil was covered with black ash); HS – high 

severity (sites where foliage and tree trunks were completely burned and soil was covered with 

white ash); (II) - 120 soil samples were collected in total according to severity category (each 

category contained 40 samples). Finally, each category was subdivided according to the two 

vegetation species, i.e., each of the three severity categories contained 26 sample areas under 

Quercus pubescens Willd. and 14 sample areas under Juniperus communis L. (Figure 3.2). 

Prior to the soil sampling procedure 7 days post-fire, the ash layer on the surface was removed 

with a soft brush, in order to avoid the contamination of the samples and subsequent false 

results. Afterward, during the subsequent soil samplings, there was no need for removal of 

surface ash because it had already been incorporated into the soil profile via precipitation.  

Soil samples were collected at a depth of 0-3 cm with a spade and each sampling point was 

georeferenced using Trimble GeoXH handheld device (GeoExplorer® 6000 series, Trimble 

GmbH, Raunheim, Germany), and marked with a marking bar. The final experimental design 

is shown in Figure 3.3. The categorical random sampling procedure led to a randomised 

sampling grid, where individual points (samples) were on average ~20 m apart (minimal 

distance between points was 5.4 m and maximal 54.1 m). The markers allowed for periodic 

soil sampling at the same microsite at seven days (0 MAF), 3 months (3 MAF), 6 months (6 

MAF), 9 months (9 MAF), 12 months (12 MAF), 15 months (15 MAF), 18 months (18 MAF), 21 

months (21 MAF) and 24 months (24 MAF) post-wildfire within a radius of approximately 0.5 

m of the marker (Figure 3.4). A brief summary of the sampling campaign is provided in Table 

3.2 and Figure 3.5 shows wildfire affected land seven days post-fire. During each sampling 

campaign, the collection of 120 soil samples was planned, resulting in a total of 1,080 samples.  
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Figure 3.2. Sample division according to wildfire severity and vegetation type. A total of 120 

samples were divided equally into control samples (C) and two wildfire categories: medium 

severity (MS) and high severity (HS). Each of the three severity categories was further 

subdivided into samples collected under Quercus pubescens Willd (Q) and Juniperus 

communis L. (J) 

 

 

 

Figure 3.3. Study area and experimental design. Different shapes denote vegetation species 

(circles indicate samples under Quercus pubescens Willd.; triangles indicate samples under 

Juniperus communis L.) and different colours denote wildfire severity (green - C; orange - MS; 

red - HS) 
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Figure 3.4. Soil samples collected at three-month intervals at 120 marked locations, each time 

at a different part of the marked circle within a radius of approximately 0.5 m from the marker 
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Table 3.2. Summary of the sampling campaign with corresponding dates. 

Sampling repetition number Months after fire Sampling date 

I 0 MAF 22nd August 2019 

II 3 MAF 25th November 2019 

III 6 MAF 28th February 2020 

IV 9 MAF 28th May 2020 

V 12 MAF 25th August 2020 

VI 15 MAF 27th November 2020 

VII 18 MAF 3rd March 2021 

VIII 21 MAF 25th May 2021 

IX 24 MAF 26th August 2021 

 

Figure 3.5. Wildfire affected land photographed on 22nd August 2019 
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3.3. Laboratory analysis 

3.3.1. Chemical and physical analysis 

 

Per each sampling campaign, 60 air-dried, ground and sieved (<2 mm) samples were 

separated for chemical analysis, while the remainder of 60 samples were not subjected to 

chemical analysis. Soil pH, electrical conductivity (EC), carbonates (CaCO3) and total carbon 

(TC) content were determined using standard analytical methods (Table 3.3). 

 

Table 3.3. Summary of the analytical laboratory methods used in the study  

Variable Units Method  Reference 

pH -log[H+] Electrometric (1:2.5 H2O solution) HRN ISO 10390: 2005 

Electrical conductivity μS/cm Electrometric HRN ISO 11265: 2004 

Carbonates % Volumetric HRN ISO 10693: 2004 

Total carbon content % Dry combustion HRN ISO 10694: 2004 

 

 

Soil pH and EC were determined electrometrically, using Beckman's φ 72 pH meter, in H2O 

(1:2.5), and HACH-CO150 conductometer (300-1900 μS), respectively. CaCO3 content was 

determined by volumetric Scheibler calcimeter and TC by dry combustion using a vario 

MACRO CHNS analyzer (Elementar Analysensysteme GmbH, Langenselbold, Germany). 

SOM was calculated by multiplying the remainder of the difference between TC and CaCO3 

with a factor 1.724. To minimise laboratory expenses, half of the total collected samples were 

analysed, while the remaining 50% were estimated using the most effective SOM prediction 

model. 

 

3.3.2. Measurement of soil reflectance 

 

Measurement of soil spectral reflectance in laboratory conditions was performed on all air-

dried, ground and sieved (<2 mm) samples (N=120 for each sampling campaign). The 

measurements were carried out using a portable spectroradiometer (FieldSpec®3, ASD Inc., 

Boulder, USA) with a wavelength range of 350 - 1050 nm, a sampling interval of 1.4 nm and a 

spectral resolution of 3 nm with simultaneous recording of 700 wavelengths. Individual soil 

samples were placed in 1.5 cm petri dishes and recorded at a fixed distance of 0.5 cm using 

a vertically mounted manual optical probe (Figure 3.6). Prior to initial readings, the device was 

calibrated using a white calibration plate (Spectralon®, Labsphere, North Sutton, USA), and 
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white reference measurements were repeated every 10-15 minutes, as per manufacturer’s 

instructions. The frequency at which the radiation is absorbed gives a reduced reflected signal, 

which is registered in the detector as a percentage of reflectance (% R). Each sample's 

reflectance measurement was taken by averaging 3 consecutive scans to reduce the noise in 

the spectral signal. A total of 1,080 soil spectral reflectance curves were recorded.  

In order to compare the accuracy and precision of laboratory and in-situ obtained soil spectra 

models, soil reflectance was additionally measured on field-moist samples prior to grounding 

and sieving procedure on two occasions: 25th November 2019 (3 MAF) and 27th November 

2020 (15 MAF). In order to determine the soil moisture percentage for soil samples taken on 

these two occasions, the following formula was used: 

 

𝑠𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%) =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑖𝑒𝑙𝑑 𝑚𝑜𝑖𝑠𝑡 𝑠𝑜𝑖𝑙 (𝑔) − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 (𝑔)

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 (𝑔)
∗ 100 

 

Figure 3.6. Laboratory measurement of soil reflectance on air dried samples using 

FieldSpec®3 spectroradiometer 

 

3.4. Satellite imagery acquisition and processing 

 

Two cloud-free Sentinel-2 images (level-2A processing) of the survey location were 

downloaded from Copernicus Open Access Hub (https://scihub.copernicus.eu/) according to 

the closest dates of field sampling, namely 31st August and 5th September 2019. Sentinel-2 is 

a European Space Agency satellite mission equipped with a multispectral optical imaging 

instrument that collects data from thirteen (13) spectral bands: four VNIR bands at 10 m, six 

  

https://scihub.copernicus.eu/
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VNIR and SWIR bands at 20 m and three bands at 60 m spatial resolution focused towards 

cloud screening and atmospheric correction (Table 3.4).  

 

Table 3.4. Information on Sentinel-2 wavelengths and bandwidths (Source: 

https://sentinel.esa.int) 

Spatial 
Resolution 

(m) 

Band 
Number 

S2A S2B 

Central 
Wavelength 

(nm) 

Bandwidth 
(nm) 

Central 
Wavelength 

(nm) 

Bandwidth 
(nm) 

10 

2 492.4 66 492.1 66 

3 559.8 36 559.0 36 

4 664.6 31 664.9 31 

8 832.8 106 832.9 106 

20 

5 704.1 15 703.8 16 

6 740.5 15 739.1 15 

7 782.8 20 779.7 20 

8a 864.7 21 864.0 22 

11 1613.7 91 1610.4 94 

12 2202.4 175 2185.7 185 

60 

1 442.7 21 442.2 21 

9 945.1 20 943.2 21 

10 1373.5 31 1376.9 30 

 

The full mission contains twin satellites (Sentinel-2A and Sentinel-2B) flying in the same orbit 

but phased at 180°, which allows a high revisit frequency of 5 days at the Equator. The level 

2A images are atmospherically corrected from level-1C Top of the Atmosphere (ToA) to Bottom 

of Atmosphere (BoA) reflectance using Sen2cor processor (Main-Knorn et al., 2017). All of the 

image processing, visualisation and analysis was performed using freely available software 

developed by European Space Agency (ESA), SNAP-Sentinel Application Platform 

(http://step.esa.int). The software enables the extraction of multispectral data from 

atmospherically corrected image pixels, as is shown in Figure 3.7.  

 

http://step.esa.int/
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Figure 3.7. Sentinel-2 image and multispectral reflectance curves obtained from image pixels  

 

Due to the large data volume of the images, which hinders the computing and analysis time, 

the images were first subsetted to the smaller area of interest. Eight VNIR and two SWIR 

(Short-Wave Infrared) bands with spatial resolution of 20 and 10 m were selected, and bands 

B1, B9 and B10 were omitted from the study because of their coarser 60 m resolution. The 

details of each band selected for the study are shown in Table 3.5. Subsequently, the images 

were resampled to uniform spatial resolution of 10 m using the nearest neighbour resampling. 

Some of the georeferenced sample points were uploaded to the resulting images and the 

reflectance values overlapping with the pixels extracted (N=28). Thereby, we generated two 

separate datasets with reflectance values obtained from two different sources (FieldSpec®3 

hyperspectral and Sentinel-2 multispectral) for further model comparison. 

 

Table 3.5. Summary description of the multispectral bands used in the study 

Band  Spatial Resolution (m) Spectral range (nm)  Central wavelength (nm) Description 

B2 10 458–523 490 Blue 

B3 10 543–578 560 Green 

B4 10 650–680 665 Red 

B5 20 698–713 705 VNIR 

B6 20 733–748 740 VNIR 

B7 20 773–793 783 VNIR 

B8 10 785–900 842 VNIR 

B8a 20 855–875 865 VNIR 

B11 20 1565–1655 1610 SWIR 

B12 20 2100–2280 2190 SWIR 
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3.5. Statistical analysis and predictive modelling  

 

3.5.1. Descriptive statistics and variability of soil properties after the wildfire 

 

Before the statistical analysis was carried out, the collected data were checked for normality 

visually using Q-Q plots and histograms, and statistically using Kolmogorov-Smirnov test. The 

data was transformed when needed to meet the normality criterion in further statistical analysis 

using several techniques: logarithmic, Box-Cox and Yeo-Johnson transformations (McGrath 

et al., 2004; Yeo and Johnson, 2000; Box and Cox, 1964). Z-scores were subsequently 

calculated in order to detect outliers, which were removed if the score exceeded 3 standard 

deviations (Kannan et al., 2015). Once the normalised data were obtained, a factorial ANOVA 

was used to determine the percentage of variation attributable to each of the factors: fire 

severity, time and vegetation type. Tukey’s HSD test was applied where significant differences 

were observed (p<0.05). Where data normality could not be achieved, a non-parametric 

Kruskal-Wallis analysis was applied and multiple comparison of mean ranks for all groups was 

applied where significant differences were observed (p<0.05). 

The analysis was performed in the R 3.6.2 environment (R Core Team, 2021) using ggbiplot 

(v0.55), plyr (v1.8.5) and car (v3.0-6) packages, and Statistica 12.0 software (StatSoft, Inc., 

2013). Graphs were created using Plotly Chart Studio (Plotly Technologies Inc., 2015). 

 

3.5.2. Spectral data analysis and model development 

 

Raw spectral reflectance data was used in all model developments, and spectral bands from 

350 to 409 nm were removed due to large noise effect. If needed, for improvement of the 

signal-to-noise ratio, transformations of the original spectra were performed using first and 

second derivatives, as well as Savitzky-Golay filter using a second-order polynomial for 

derivation and smoothing (Nawar and Mouazen, 2017; Ben-Dor et al., 1997).  

For the development of calibration and validation models for the prediction of SOM content 

based on VNIR spectral reflection two models were compared. First, multivariate linear partial 

least squares regression (PLSR), and second, non-linear neural networks (ANN). The 

independent (predictor, x-variable) input was the raw reflectance data in the range from 410-

1050 nm, and the dependent (y-variable) input was the SOM content. The datasets were split 

in two parts: calibration (50%) and validation (50%).   

Spectral data were subjected to principal component analysis (PCA) prior to ANN modelling 

due to its computationally demanding processing time. PCA is a technique that can be used 
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to reduce the dimensionality of a large number of spectral variables. PCs are computed as 

linear combinations of the spectral data that explain the most variance that are not mutually 

correlated. The first PC is the combination that accounts for the largest amount of variance in 

the sample, and each of the next PCs explain progressively smaller variance, until only those 

individual PCs that capture more than 0.1% of the variance in the data set are calculated and 

retained (Ringnér, 2008). In this study, PCA was applied to all of the 641 spectral variables 

(wavelengths), and the PC scores obtained via PCA analysis were used as input variables in 

the ANN modelling procedure. 

 

For comparison of the accuracy and precision of prediction models described in Objective 3 

(see Chapter 1.1.), the subsets of the original collected dataset (N=1080) were defined as 

follows: 

 

1. In order to compare the accuracy and precision of linear and non-linear hyperspectral 

prediction models, reflectance data for the entire reflectance dataset collected over the 2-year 

study period was subjected to predictive SOM modelling (N=1080). Afterwards, this dataset 

was split according to the N of the sampling periods (0-24 MAF) and each model was 

compared (N=120).  

 

2. In order to compare the accuracy and precision of hyperspectral prediction models using 

laboratory and in-situ measurements, reflectance data collected on 25th November 2019 (3 

MAF) and 27th November 2020 (15 MAF) was used (N=240). On these two occasions the 

same soil samples were measured in field-moist and air dry state.  

 

3. For comparison of the accuracy and precision of hyperspectral and multispectral (Sentinel-

2) reflectance prediction models, partial reflectance data collected in the immediate post-fire 

period (0 MAF) was used (N = 28).  

 

The original spectral data measured by spectroscopy and satellite imaging was processed by 

pre-treatment and transformation methods in ViewSpec Pro 4.07 software (ASD Inc., USA). 

Analysis of spectral data and SOM content (%) was performed using statistical analysis 

methods in the Unscrambler 9.7 spectral data analysis software tool (CAMO Software AS., 

Norway) and in the statistical package Statistica 12.0 (StatSoft, Inc., USA). 

Models were tested for reliability and prediction ability using full cross-validation (each 

individual sample was used to test model estimates based on all other samples). The best 

performing models were used to predict the samples with undetermined SOM (N = 60). For 

the purpose of analysing the accuracy and performance of the model, the following was used: 
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coefficient of determination (R2), root mean square error (RMSE), and ratio of performance to 

deviation (RPD). Significance values for the entire statistical analysis will be performed for an 

error probability level of p <0.05. RMSE is defined as: 

 

𝑅𝑀𝑆𝐸 =  √
∑𝑛

𝑠=0 (𝑂𝑠−𝑃𝑠)2

𝑛
 , 

where Os and Ps are the observed and predicted values of SOM, and n is the number of 

samples. Models with the highest R2 and the lowest RMSE were considered as the best to 

predict post-fire SOM. RPD was calculated as the ratio between standard deviation (SD) of the 

reference SOM content against the root mean squared error of prediction (RMSEp), and 

evaluated according to the classification system shown in Table 3.6. According to Gholizadeh 

et al. (2018b) poor models can be used in differentiation between high and low values, however 

they cannot be used for quantitative predictions. Quantitative predictions are possible at RPD 

values greater than 1.8. A step-by-step illustration of the overall modelling process is shown in 

Figure 3.8. 

 

Table 3.6. Classification system for model accuracy assessment determined by ratio of 

performance to deviation (RPD) value 

RPD value 
Classification of the 

model 

< 1.0 very poor 

poor 1.0 < RPD < 1.4 

1.4 < RPD < 1.8 fair 

1.8 < RPD < 2.0 good 

2.0 < RPD < 2.5 very good 

> 2.5 excellent 

Source: Gholizadeh et al. (2018b) 
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Figure 3.8. Schematic overview of spectral modelling procedure for comparison of 

hyperspectral and multispectral datasets. The procedure is similar when building models to 

compare in-situ and laboratory datasets 
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3.6. Geostatistical univariate and multivariate modelling and mapping 

 

Geostatistical mapping was performed using ArcGis Pro 2.6.0 (ESRI, 2020). Spatial 

connectivity of collected SOM data was tested for anisotropy using directional semivariograms, 

and spatial dependence was assessed using the nugget/sill ratio.  

Afterwards, the values for non-sampled sites were evaluated using two different interpolation 

methods. For univariate interpolation, ordinary kriging (OK) was used, and for multivariate 

interpolation, ordinary cokriging (OCK) was used. The covariates used were soil pH, EC, 

CaCO3 content and average reflectance value calculated from 410-1050 nm wavelengths 

obtained with a proximal sensor. Furthermore, for the 0 MAF exclusively, the satellite sensor 

band that exhibited the highest correlation with SOM was utilised as a covariate. Anisotropy 

was taken into account for acquisition of the best fitted semivariogram models. In each 

interpolation, a maximum of 5 neighbours were included, and weights were assigned in a 

search neighbourhood divided into 4 sectors with 45° offsets. The accuracy of the variograms 

and the generated maps was evaluated using the root mean square error (RMSE) after cross-

validation. The relative improvement (RI) in RMSE was used to measure the improvement on 

the prediction accuracy of OCK over the OK method, which was calculated using the following 

formula: 

𝑅𝐼 (%) =
𝑅𝑀𝑆𝐸𝑂𝐾 − 𝑅𝑀𝑆𝐸𝑂𝐶𝐾

𝑅𝑀𝑆𝐸𝑂𝐾
∗ 100
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4. RESULTS 

 

4.1. Meteorological observations 

 

Extreme meteorological conditions were recorded in all years studied (2019-2021), as shown 

in Figure 4.1. In 2019, 224.5 mm more annual precipitation was recorded than the 30-year 

average (1971-2000), and the month of November recorded an extreme 183 mm above-

average precipitation (Table 4.1). Therefore, 2019 was assessed as „very wet“ by the Croatian 

Meteorological and Hydrological Service (DHMZ, data freely available at: https://meteo.hr/). 

July of 2019 alone received 38.5 mm of precipitation more than average (Table 4.1), which 

influenced the moisture content of the vegetation and soil, ultimately causing the decrease in 

both wildfire number and severity in the area (Croatian Fire Brigade, 2022). 

Although roughly average annual precipitation was recorded in 2020 and 2021, the values 

show considerable month-to-month variability and a period of prolonged drought in the winter 

and spring months, followed by extreme precipitation in the fall (November 2019 and October 

2020). Similarly, average annual temperatures remained around 15 °C during the study years, 

although above-average temperatures were consistently recorded during the summer months. 

For example, August was 2.1, 1.9, and 1.2 °C above 30-year average temperatures in 2019, 

2020, and 2021, respectively. 

In view of the fact that ash produced by the wildfire is highly mobile, and is quickly redistributed 

and incorporated into the soil via wind and water (Pereira et al., 2019), it is important to mention 

that the first major precipitation events were recorded approximately 30 days post-fire, on 24th 

and 26th of September 2019, with 19.1 and 44.9 mm of rain, respectively. 
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Figure 4.1. Monthly precipitation and temperature during the studied years in comparison with the 30-year average (1971-2020). The arrows 

indicate the dates on which sampling campaigns were carried out. Graph data source: Croatian Meteorological and Hydrological Service (DHMZ)
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Table 4.1. Meteorological data in the studied years and their deviation from the 30-year 

average 

 2019 2020 2021 1971-2000 Difference 
2019 

Difference 
2020 

Difference 
2021 

 Temperature, °C 

January 4.5 5.3 5.6 7.3 -2.8 -2.0 -1.7 

February 7.6 8.4 8.0 7.5 +0.1 +0.9 +0.5 

March 10.5 9.4 7.6 9.7 +0.8 -0.3 -2.1 

April 13.7 13.4 10.9 12.9 +0.8 +0.5 -2.0 

May 14.9 18.3 17.0 17.5 -2.6 +0.8 -0.5 

June 24.9 21.4 24.2 21.3 +3.6 +0.1 +2.9 

July 25.5 24.8 26.1 23.9 +1.6 +0.9 +2.2 

August 25.8 25.6 24.9 23.7 +2.1 +1.9 +1.2 

September 20.3 20.7 20.6 19.9 +0.4 +0.8 +0.7 

October 15.0 13.7 16.1 15.9 -0.9 -2.2 +0.2 

November 13.4 9.4 12 11.4 +2.0 -2.0 +0.6 

December 8.4 8.7 8.5 8.5 -0.1 +0.2 +0.0 

Average 15.4 14.9 15.1 15.0 +0.4 -0.03 +0.17 

 Precipitation, mm 

January 87.1 21.6 138.7 72.6 +14.5 -51.0 +66.1 

February 13.9 22.5 46.4 62.5 -48.6 -40.0 -16.1 

March 30.7 40.0 19.0 63.5 -32.8 -23.5 -44.5 

April 104.0 14.8 43.1 70 +34.0 -55.2 -26.9 

May 118.6 21.4 22.2 64.7 +53.9 -43.3 -42.5 

June 6.9 160.7 6.5 54.4 -47.5 +106.3 -47.9 

July 68.9 5.2 30.8 30.4 +38.5 -25.2 +0.4 

August 18.8 46.3 23.8 49.6 -30.8 -3.3 -25.8 

September 81.6 133.4 78.4 104 -22.4 +29.4 -25.6 

October 108.6 208.3 139.7 106.7 +1.9 +101.6 +33.0 

November 288.6 45.6 175.9 105.6 +183.0 -60.0 +70.3 

December 176.0 201.3 123.8 95.2 +80.8 +106.1 +28.6 

Total 1103.7 921.1 848.3 879.2 +224.5 +41.9 -30.9 

Table data source: Croatian Meteorological and Hydrological Service (DHMZ)
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4.2. Field observations of post-fire vegetation recovery and visual soil 

status report 

 

As previously stated, Mediterranean localities are well adapted to wildfire, and the good 

aggregate structure of the soil of the studied area (chromic Cambisol) allows high permeability 

and good drainage and high content of weatherable minerals that provide the nutrients needed 

for resprouting. Additionally, the terrain is flat, which neutralises the danger of post-fire soil 

erosion by water and runoff. 

With that in mind, this chapter briefly describes the key on-site post-fire occurrences in hopes 

to improve and clarify the temporal evolution of SOM content and other soil properties as 

measured via laboratory analysis, chemometric methods and observed via remote sensing, 

and discussed in the following chapters. A visual overview of the field work and the initial post-

fire soil status is shown in Figure 4.2.  

By visually monitoring the vegetation recovery on the study site, it can be stated that a regrowth 

of vegetation in MS occurred as early as 3 MAF. The majority of MS areas affected by the fire 

in that timeframe exhibited native grass regrowth, mixed with other perennial plant species, 

such as ferns and creepers. On the other hand, HS samples did not follow this trend and were 

still mostly bare.  

 

In the following vegetation season of 2020, namely on 6 and 9 MAF, MS samples continued 

to exhibit vegetation regrowth in the form of native grasses, which seemed to start to suppress 

all other vegetation species that started growing while the soil surface was stripped of 

vegetation following the wildfire (Figure 4.2.b and 4.2.c). During this time, vegetation started 

resprouting in HS areas, and consisted mostly of ferns and procumbent/creeper species, but 

the soil surrounding them was still exposed (Figures 4.3.c and 4.4.c). Vigorous resprouting at 

the base of the burned Quercus p. Willd. was observed in both MS and HS areas (see upper 

right corner of Figure 4.3.c), while resprouting of the Juniperus c. L. was spotted mostly in HS 

areas where there was no competition with other species (see upper left corner of Figure 

4.5.a).  

By the 21 and 24 MAF sampling period, MS areas were visually much more comparable to C, 

while soil in HS areas was still rather exposed (Figures 4.6 and 4.7). Furthermore, the long-

term presence of charred material was observed in HS areas throughout the study period 

(Figure 4.5), while in MS it appeared to be less abundant and more readily incorporated into 

the soil profile (compare Figure 4.4.b and 4.4.c).  
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                       (a)                                                   (b)                                          (c) 

Figure 4.2. Soil condition on 22nd August 2019 (7 days post-wildfire): a) control, b) medium 

severity, c) high severity  

 

                       (a)                                             (b)                                              (c) 

Figure 4.3. Soil condition on 28th February 2020 (6 months post-wildfire): a) control, b) 

medium severity, c) high severity 
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                      (a)                                             (b)                                              (c) 

Figure 4.4. Soil condition on 28th May 2020 (9 months post-wildfire): a) control, b) medium 

severity, c) high severity  

  

                                 (a)                                                                     (b) 

Figure 4.5. Charred material on the surface of the HS sampling area photographed on: a) 28th 

February 2020 (6 months post-wildfire), and b) 03rd March 2021 (18 months post-wildfire) 
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                     (a)                                             (b)                                              (c) 

Figure 4.6. Soil condition on 25th May 2021 (21 months post-wildfire): a) control, b) medium 

severity, c) high severity 

  

 

                   (a)                                            (b)                                             (c) 

Figure 4.7. Soil condition on 26th August 2021 (24 months post-wildfire): a) control, b) medium 

severity, c) high severity 
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4.3. Soil organic matter content after the wildfire 

 

Throughout the 2-year sampling period, the plan was to collect 120 soil samples per campaign. 

However, at certain C sampling sites, the unexpectedly dense vegetation at 21 MAF and 24 

MAF impeded access to the area, thus preventing sample collection. Consequently, only 1,074 

samples were collected out of the intended 1,080 samples. 

In order to check the normality of the collected SOM data normal Q-Q plot and histogram were 

created (Figure 4.8). Additionally, a Kolmogorov-Smirnov test was performed (N=537). The 

results of the test showed that the distribution of SOM content does not conform to normally 

distributed data (K-S d = 0.16, p-value < 0.001). After the Box-Cox transformation the Z-scores 

were calculated and 2 outliers were detected and removed from further analysis. In the context 

of detecting outliers, Z scores can be used to identify data points that deviate significantly from 

the average.Normal Gaussian distribution was achieved after transformation (Figure 4.8), and 

this dataset was used for further analysis. 

Overall SOM content during the study period and according to the wildfire severity and 

vegetation type are presented in Table 4.2. Both the standard deviation (SD) and coefficient 

of variation (CV) indicate moderate variability in the data set (according to Zhang et al., 2007), 

especially in the immediate post-fire period (SD = 4.49, CV = 0.53) and at the end of the two-

year study (SD = 6.58, CV = 0.55). The average SOM content varied from 6.9 to 11.89% 

throughout the study period. The overall lowest content of 3.72% was recorded 21 months 

after wildfire in HS samples and under Quercus pubescens Willd. while the highest content of 

33.19% was recorded 24 months after wildfire in C samples under the same vegetation type.
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Skewnes     0.04 

Kurtosis      -0.27 

K-S p          >0.2 

Lambda      -0.94 

         

 

 

  

  

 

 

  

 

 

 

 

 

Figure 4.8. Histogram and Q-Q plot for SOM content before and after transformation (N=537) 

 

Table 4.2. Descriptive statistics of SOM content (%) for nine sampling times, three wildfire 

severity levels and two vegetation types 

 Sampling time Wildfire severity Vegetation  

 0 MAF 3 MAF 6 MAF 9 MAF 12 MAF 15 MAF 18 MAF 21 MAF 24 MAF C MS HS Quercus p. Juniperus c. 

N 60 60 60 60 60 60 60 56 59 178 179 178 348 187 

Mea
n 

8.54 7.30 7.92 7.42 6.90 7.38 7.80 7.01 11.89 7.55 7.31 9.19 8.94 7.04 

Min 4.68 4.52 4.21 4.01 4.44 4.38 4.03 3.72 4.99 4.01 4.00 3.72 3.72 4.00 

Max 23.89 20.34 22.80 17.92 12.93 15.94 16.07 21.85 33.19 33.19 22.96 31.76 33.19 27.99 

SD 4.49 2.81 3.28 2.65 2.13 2.37 2.51 3.20 6.58 3.58 2.80 4.64 3.97 3.33 

CV 0.53 0.38 0.41 0.36 0.31 0.32 0.32 0.46 0.55 0.47 0.38 0.50 0.44 0.47 

MAF – Months after fire; C – Control; MS – Medium severity; HS – High severity; SD – Standard deviation; CV – Coefficient of 

variation 

Original data Box-Cox transformation 

Skewnes     2.67 

Kurtosis     10.11 

K-S p         <0.001 
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Factorial analysis of variance revealed that the content in SOM varied significantly over time, 

and according to the severity of wildfire and vegetation type (Table 4.3). High severity wildfire 

caused an overall 21.72% increase in average SOM content, while medium severity wildfire 

did not cause a significant change compared to unburned samples (Table 4.3). In addition, 

SOM content was significantly higher under Quercus p. than Juniperus c. throughout the study 

period. The interaction between wildfire severity x time factors was significant, while all other 

interactions between factors were not significant.  

 

Table 4.3. Results of the factorial ANOVA and the mean values for the content of the SOM 

depending on the severity of the wildfire, time, vegetation and their interactions 

 SOM (%) N 

T *  

FS *  

V *  

T × FS *  

T × V n.s.  

FS × V n.s.  

FS × V × T n.s.  

Time-Since-Fire   

0 MAF 8.54 ± 0.45 b 60 

3 MAF 7.30 ± 0.45 b 60 

6 MAF 7.92 ± 0.45 b 60 

9 MAF 7.42 ± 0.45 b 60 

12 MAF 6.90 ± 0.45 b 60 

15 MAF 7.38 ± 0.45 b 60 

18 MAF 7.80 ± 0.45 b 60 

21 MAF 7.01 ± 0.48 c 56 

24 MAF 11.89 ± 0.45 a 59 

Fire severity   

C 7.55 ± 0.26 b 178 

MS 7.31 ± 0.26 b 179 

HS 9.19 ± 0.26 a 178 

Vegetation   

Quercus p. 8.94 ± 0.18 a 348 

Juniperus c. 7.04 ± 0.24 b 187 

Abbreviations: FS – Fire severity; V - Vegetation; T- Time; C – Control; MS – Medium severity; HS – High severity; MAF – Months 

after fire. * – Significant difference at p<0.05; n.s. not significant at p<0.05. Different letters represent significant (p<0.05) 

differences between fire severity, sampling time and vegetation. Values following ± indicate standard deviation. 
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In the first 15 MAF, HS showed significant increase compared to C (Figure 4.9). The initial 

average (0 MAF) SOM content in C samples was 7.09%, and measured content in severely 

burned areas (0 MAF-HS) was 10.5%, which is a 48.1% increase. During the next five sampling 

periods (3, 6, 9, 12 and 15 MAF) the average SOM content in HS was 34.88%, 46.97%, 

43.65%, 14.89% and 20.7% higher than content measured in C samples. In the following 

period (18, and 21 MAF) the content of SOM was higher in HS compared to C, although not 

significantly. The SOM content in MS showed an 8.68% increase in the immediate post-fire 

period (0 MAF) compared to C, which is notably lower than the increase observed in HS. No 

significant change compared to C was recorded during the 3, 6, 12, 15, 18 and 21 MAF. On 

the final sampling date (24 MAF), MS showed 29.97% decrease in average SOM content 

compared to C, while there was no significant difference between C and HS samples.   



 

51 

 

 

Figure 4.9. Mean SOM content (%) according to the interaction of the wildfire severity and time-since-fire factors. Whiskers represent standard 

deviation. Different letters indicate significant (p < 0.05) differences between wildfire severity and time-since-fire.
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In Figure 4.10. the average SOM content (%) according to the interaction of the wildfire 

severity, time-since-fire and vegetation factors is shown. As can be seen from the graph, the 

higher content was recorded under Quercus p. species in C, MS and HS samples. Moreover, 

higher SOM content compared to C persisted in Q-HS samples almost throughout the study 

period, while in J-HS samples it was higher during the first 15 months post-fire. At 24 MAF, 

lower content of SOM was observed in Q-MS and J-MS compared to both Q-HS and Q-C.
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Abbreviations: C – Control; MS – Medium severity; HS – High severity; MAF – Months after fire; Q – Quercus p.; J – Juniperus c.  

Figure 4.10. Mean SOM content (%) according to the interaction of the wildfire severity, time-since-fire and vegetation factors. Whiskers represent 

95% confidence intervals. Different letters indicate significant (p < 0.05) differences between wildfire severities on each given date
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4.4. Other soil properties after the wildfire 

 

The results of statistical normality check showed that the distribution of soil pH conforms to 

normally distributed data (K-S d = 0.06, p-value = 0.001), while EC (K-S d = 0.22, p-value < 

0.001) and CaCO3 (K-S d = 0.35, p-value < 0.001) required transformations. Several 

transformation techniques were attempted: logarithmic, and more powerful Box-Cox and Yeo-

Johnson transformations (McGrath et al., 2004; Yeo and Johnson, 2000; Box and Cox, 1964). 

Box-Cox transformation of EC data achieved the most satisfactory Gaussian curve, although 

data normality was not achieved in its entirety (Figure 4.11). The CaCO3 dataset contained 

zero values, and seeing how Box-Cox transformation is only valid for positive x, the zero values 

were arbitrarily replaced with a positive constant, as proposed in Bellego and Pape (2019). 

This approach, however, also did not produce satisfactory results and a normal Gaussian 

distribution, and so a decision was made to use the original data in further analysis. The 

justification for this approach was explained by Raymaekers and Rousseeuw (2021) who 

argue that normality should fit the central part of the data, which is true in the case of CaCO3 

dataset (Figure 4.12). 



 

55 

 

 

Figure 4.11. Histogram and Q-Q plot for soil EC data before and after transformation (N=535)

Skewnes     0.05 

Kurtosis      -0.25 

K-S p          <0.05 

Lambda      -0.67 

         

Skewnes     4.19 

Kurtosis      22.82 

K-S p          <0.001 

         

Box-Cox transformation Original data 
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Figure 4.12. Histogram and Q-Q plot for soil pH and CaCO3 data (N=535) 

 

Overall data for soil pH, EC and CaCO3 content during the study period and according to the 

wildfire severity and vegetation type are presented in Table 4.4. The variability data for soil pH 

showed that CV ranged from 0.53 to 0.82 throughout the study period, which indicates 

moderate variability (according to Zhang et al., 2007). Soil EC data also showed moderate 

variability, except on 0 and 15 MAF, when CV was 0.92 and 0.96, respectively. Soil CaCO3 

content data was highly variable, with CV values ranging from 1.07 to 2.44 throughout the 

study period. Throughout the study period the average soil pH, EC and CaCO3 varied from 

6.55 to 7.11, 117.4 to 283.4 μS/cm, and 0.07 to 0.37%, respectively. The higher values were 

recorded in the first 6 months post-wildfire, and from then on the declining trend was observed 

for these soil properties. The overall lowest pH value was 5.12, recorded in C samples, 18 

MAF and under Quercus p. vegetation, while the highest was 8.03 recorded in HS samples, 6 

  

Skewnes     0.15 

Kurtosis      -0.32 

K-S p          >0.05 

 

         

  

Skewnes     5.18 

Kurtosis      34.11 

K-S p          <0.001 
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MAF and under the same vegetation type. The overall significantly higher pH values in MS and 

HS compared to C persisted throughout the study period in both vegetation types (Figure 4.13).  

Similarly, the overall lowest EC value was 38.7 μS/cm also recorded in C samples, 18 MAF 

and under Quercus p. vegetation, while the highest was 1115 μS/cm recorded in HS samples, 

6 MAF and under Juniperus c. vegetation. The overall significantly higher EC values in HS 

persisted in the first 12 MAF period in both vegetation types, while in the following period (12-

24 MAF) it started to decrease, but was still significantly higher than C. There was no significant 

difference between MS and C samples in both vegetation types throughout the study period 

(Figure 4.14). 

Throughout the study period, most of the soil samples contained no carbonates, and in C 

samples the content varied from 0 to 0.38%, in MS samples it varied from 0 to 0.44%, while in 

HS samples it varied from 0 to 3.61%. The overall significantly higher CaCO3 content in HS 

persisted in the first 12 MAF period in both vegetation types, while there was no significant 

difference between MS and C samples in both vegetation types (Figure 4.15), which is similar 

to the movement of the average EC values throughout the study period. 

 

Factorial analysis of variance revealed that the content in soil pH and EC varied significantly 

over time, and according to the severity of wildfire and vegetation type, while soil CaCO3 

content varied significantly over time and according to severity, but not to vegetation type 

(Table 4.5). Wildfire caused an increase in soil pH in both MS and HS compared to C, while 

samples collected under Juniperus c. had significantly higher pH values than those collected 

under Quercus p. Furthermore, soil EC and CaCO3 content were significantly higher in HS 

compared to C and MS throughout the study, while samples collected under Quercus p. had 

significantly higher EC values than those collected under Juniperus c. It is also visible from 

Table 4.5 that no significant differences were observed in CaCO3 content in respect to different 

vegetation types.  
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Table 4.5. Factorial ANOVA results and mean values for soil pH, EC and CaCO3 content 

according to fire severity, time, vegetation, and their interactions 

 pH EC (μS/cm) CaCO3 (%) 

T * * * 

FS * * * 

V * * n.s. 

T × FS n.s. * - 

T × V n.s. n.s. - 

FS × V * * - 

FS × V × T n.s. n.s. - 

Time-Since-Fire    

0 MAF 6.90 ± 0.04 b 266.87 ± 13.37 a 0.15 ± 0.04 b 

3 MAF 6.85 ± 0.04 b 144.11 ± 13.37 b 0.37 ± 0.04 a 

6 MAF 7.12 ± 0.04 a 168.12 ± 13.37 b 0.33 ± 0.04 a 

9 MAF 6.76 ± 0.04 b 132.77 ± 13.37 b 0.14 ± 0.04 b 

12 MAF 6.70 ± 0.04 c 121.37 ± 13.37 b 0.12 ± 0.04 b 

15 MAF 6.66 ± 0.04 c 125.54 ± 13.37 b 0.11 ± 0.04 b 

18 MAF 6.34 ± 0.04 c 114.74 ± 13.37 b 0.07 ± 0.04 b 

21 MAF 6.39 ± 0.04 c 125.79 ± 14.06 b  0.13 ± 0.04 b 

24 MAF 6.54 ± 0.04 c 146.08 ± 13.44 b 0.12 ± 0.04 b 

Fire severity    

C 6.29 ± 0.02 c 108.12 ± 7.75 b 0.06 ± 0.02 b 

MS 6.56 ± 0.02 b  108.66 ± 7.73 b 0.06 ± 0.02 b 

HS 7.24 ± 0.02 a 230.35 ± 7.83 a 0.38 ± 0.02 a 

Vegetation    

Quercus p. 6.66 ± 0.01 b 162.06 ± 5.30 a 0.18 ± 0.02 a 

Juniperus c. 6.73 ± 0.02 a 136.03 ± 7.24 b 0.16 ± 0.02 a 

Abbreviations: FS – Fire severity; V - Vegetation; T- Time; C – Control; MS – Medium severity; HS – High severity; MAF – Months 

after fire. Significant differences at: p<0.05*,  n.s. not significant at p<0.05. Different letters represent significant (p<0.05) 

differences between fire severity, sampling time and vegetation. Values following ± indicate standard deviation. 
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Abbreviations: C – Control; MS – Medium severity; HS – High severity; MAF – Months after fire; Q – Quercus p.; J – Juniperus c.  

Figure 4.13. Mean soil pH values (-log[H+]) according to the interaction of the wildfire severity, time-since-fire and vegetation factors. Whiskers 

represent 95% confidence intervals. Different letters indicate significant (p < 0.05) differences between wildfire severities on each given date
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Abbreviations: C – Control; MS – Medium severity; HS – High severity; MAF – Months after fire; Q – Quercus p.; J – Juniperus c. 

Figure 4.14. Mean soil EC values (μS/cm) according to the interaction of the wildfire severity, time-since-fire and vegetation factors. Whiskers 

represent 95% confidence intervals. Different letters indicate significant (p < 0.05) differences between wildfire severities on each given date
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Abbreviations: C – Control; MS – Medium severity; HS – High severity; MAF – Months after fire; Q – Quercus p.; J – Juniperus c.  

Figure 4.15. Mean soil CaCO3 content (%) according to the interaction of the wildfire severity, time-since-fire and vegetation factors. Whiskers 

represent 95% confidence intervals. Different letters indicate significant (p < 0.05) differences between wildfire severities on each given date
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4.5. Description of soil spectral data  

 

Average spectral data of three wildfire severities were grouped according to vegetation and 

sampling time. Figures 4.16 - 4.19 compare average reflectance of C, MS, and HS taken under 

Juniperus c. and Quercus p. at the beginning and the end of the study period (0 MAF and 24 

MAF). Figures 4.20 - 4.25 compare each of the paired severity and vegetation categories (C-

J, C-Q, MS-J, MS-Q, HS-J, and HS-Q) across the sampling times. Additionally, visual 

evaluation of the MS and HS samples taken at 0 MAF recorded with two different sensors 

(hyperspectral and multispectral) is shown in Figure 4.26.  

Spectral bands from 350 to 409 nm removed from further analysis due to large noise effect 

can be seen best from the first derivative reflectance.  

In the immediate post-fire period (0 MAF), the greatest spectral differences between C, MS, 

and HS groups were in the green/yellow to red (550 to 700 nm) region, especially in samples 

taken under Quercus p. vegetation (Figures 4.16 and 4.17). At the end of the study period (24 

MAF), these spectral differences remained visible between C and HS group, however MS 

exhibited higher reflectance throughout the entire spectra, which was visible in both vegetation 

species (Figures 4.18 and 4.19). 
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Figure 4.16. Average raw (a) and first derivative (b) reflectance for control, medium severity 

and high severity samples taken under Juniperus c. vegetation immediately post-fire on 22nd 

of August 2019 (N=42). Wavelengths are expressed in nm 
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Figure 4.17. Average raw (a) and first derivative (b) reflectance for control, medium severity 

and high severity samples taken under Quercus p. vegetation immediately post-fire on 22nd of 

August 2019 (N=78). Wavelengths are expressed in nm 
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Figure 4.18. Average raw (a) and first derivative (b) reflectance for control, medium severity 

and high severity samples taken under Juniperus c. vegetation two years post-fire on 26th of 

August 2021 (N=42). Wavelengths are expressed in nm 

 

 

  

a 

  

b 



 

67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. Average raw (a) and first derivative (b) reflectance for control, medium severity 

and high severity samples taken under Quercus p. vegetation two years post-fire on 26th of 

August 2021 (N=78). Wavelengths are expressed in nm 
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It can be seen from Figures 4.20 and 4.21 that the highest average reflectance in C was 

recorded as follows: 9 MAF > 21 MAF > 24 MAF for C-J group, and 21 MAF > 9 MAF > 24 

MAF for C-Q group, i.e. in the months of May and August, while the lowest average reflectance 

was recorded as follows: 15 MAF > 3 MAF > 6 MAF in both C-J and C-Q group, i.e. in the 

months of February and November.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20. Average raw (a) and first derivative (b) reflectance for control samples taken under 

Juniperus c. vegetation during the study period. Wavelengths are expressed in nm 
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Figure 4.21. Average raw (a) and first derivative (b) reflectance for control samples taken under 

Quercus p. vegetation during the study period. Wavelengths are expressed in nm 
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Figures 4.22 and 4.23 show that the highest average reflectance in MS was recorded as 

follows: 24 MAF > 0 MAF > 9 MAF for MS-J group, and 9 MAF > 0 MAF > 24 MAF for MS-Q 

group, i.e. in the months of May and August (high spring and summer), while the lowest 

average reflectance was recorded as follows: 18 MAF > 6 MAF > 12 MAF in MS-J, i.e in the 

months of February, March and August (spring and summer) and 21 MAF > 18 MAF > 6 MAF 

in MS-Q group, i.e. in the months of February, March and May (early spring and spring).  

 

 

                 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22. Average raw (a) and first derivative (b) reflectance for medium severity samples 

taken under Juniperus c. vegetation during the study period. Wavelengths are expressed in 

nm 
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Figure 4.23. Average raw (a) and first derivative (b) reflectance for medium severity samples 

taken under Quercus p. vegetation during the study period. Wavelengths are expressed in nm 
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Figures 4.24 and 4.25 show that the highest average reflectance in HS was recorded as 

follows: 6 MAF > 15 MAF > 18 MAF for HS-J group, i.e in the month of February, March, and 

November (early spring and autumn) and 18 MAF > 0 MAF > 21 MAF for HS-Q group, i.e. in 

the months of March, May and August (spring and summer), while the lowest average 

reflectance was recorded as follows: 9 MAF > 24 MAF > 12 MAF in HS-J, and 9 MAF > 12 

MAF > 3 MAF in HS-Q group, i.e. in the months of May, August and November (spring, summer 

and autumn).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24. Average raw (a) and first derivative (b) reflectance for high severity samples taken 

under Juniperus c. vegetation during the study period. Wavelengths are expressed in nm 
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Figure 4.25. Average raw (a) and first derivative (b) reflectance for high severity samples taken 

under Quercus p. vegetation during the study period. Wavelengths are expressed in nm 
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Figure 4.26 shows average raw soil reflectance spectra in the immediate post-fire period 

measured for the same group of samples with two different sensors (FieldSpec®3 - 

hyperspectral and Sentinel-2 - multispectral). Sentinel-2 multispectral sensor detected lower 

reflectance of the HS samples compared to MS throughout the spectrum, while the 

hyperspectral sensor detected lower yellow/red reflectance and increased NIR reflectance in 

HS samples compared to MS. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26. Comparative view of hyperspectral (a) and multispectral (b) reflectance data 

(N=28). Points on the graph below mark ten respective Sentinel-2 bands used in the study 
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4.6. Linear (PLSR) and non-linear (ANN) modelling of post-fire SOM 

 

4.6.1. Comparison of PLSR and ANN models  

 

In order to compare the accuracy and precision of linear and non-linear hyperspectral 

prediction models, soil reflectance data for the entire reflectance dataset collected over the 2-

year study period, as well as the subsets containing the data from each individual sampling 

period was subjected to predictive SOM modelling. Results of the partial least regression 

(PLSR) models calculated using spectral and SOM (%) data are shown in Figure 4.27. The 

independent (predictor, x-variable) input was the raw reflectance data in the range from 410-

1050 nm, and the dependent (y-variable) input was the SOM content. At 3 MAF, 

transformations of the raw spectra were performed using the Savitzky-Golay filter which 

improved the model. The dataset was split in two parts: calibration (50%) and validation (50%). 

Overall, ten (10) PLSR models were obtained, nine (9) for each sampling period and one (1) 

for the entire 0-24 MAF dataset. At 0, 9 and 24 MAF outliers were detected and removed from 

further analysis. 

In each PLSR model, three to five PCs were identified that represented the main structured 

information in the spectral dataset (Table 4.6), with first two components summarising the most 

variation in the data (PC1: 3-39% and PC2: 17-77%), as seen from the score plots in Figure 

4.28. Residual variance for each model can be seen in the Appendix 1 (Figure 8.1).  

 

PLSR models computed for each sampling time provided fair to very good predictions 

according to RPD, with values ranging from 1.62 (6 MAF) to 2.29 (21 MAF), with an exception 

at 3 MAF which produced a poor model (RPD = 1.35) (Table 4.6). The PLSR model computed 

for the entire dataset collected over the study period (0-24 MAF) provided fair predictions, with 

RPD value of 1.55 (Table 4.6).
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● calibration ● validation 

● calibration ● validation  

 

Figure 4.27. PLSR models obtained from raw reflectance acquired at each individual sampling 

period as well as the entire reflectance dataset showing relationship between calibration and 

validation dataset 
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● calibration ● validation 

● calibration ● validation  

Figure 4.27. (continuation) PLSR models obtained from raw reflectance acquired at each 

individual sampling period as well as the entire reflectance dataset showing relationship 

between calibration and validation dataset 



 

78 

 

 ● calibration ● validation 

● calibration ● validation 

Figure 4.27. (continuation) PLSR models obtained from raw reflectance acquired at each 

individual sampling period as well as the entire reflectance dataset showing relationship 

between calibration and validation dataset 
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● calibration ● validation 

● calibration ● validation 

 

Figure 4.27. (continuation) PLSR models obtained from raw reflectance acquired at each 

individual sampling period as well as the entire reflectance dataset showing relationship 

between calibration and validation dataset 
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● calibration ● validation 

● calibration ● validation 

Figure 4.27. (continuation) PLSR models obtained from raw reflectance acquired at each 

individual sampling period as well as the entire reflectance dataset showing relationship 

between calibration and validation dataset 
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For ANN modelling, the input predictors (x-variables) were the PCA scores of raw reflectance 

data. Eleven (11) to eighteen (18) PCs summarised the most variation in the reflectance 

datasets (Table 4.6). The dataset was split in two parts: calibration (50%) and validation (50%).  

Overall, ten (10) ANN models were obtained, nine (9) for each sampling period and one (1) for 

the entire 0-24 MAF dataset. The outliers detected during PLSR modelling procedure were 

also removed from the ANN analysis.  

By comparing the performance of linear and non-linear models, it became clear that ANN 

outperformed PLSR models, with RPD values ranging from 1.96 (9 MAF) to >2.5 (0, 3, 15, 18 

and 24 MAF), which all fall in the category of very good and excellent models (Table 4.6). One 

exception was the model obtained at 21 MAF, when PLSR outperformed ANN with an RPD 

value of 2.29 (21 MAF ANN RPD=1.74).
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Table 4.6. PLSR and ANN Model performance at each individual sampling period as well as the entire reflectance dataset   

Dataset summary Model performance Unknown samples 

MIN MAX MEAN SD CV  NPC RMSEC RMSEP R2
C R2

P RPD Prediction deviation 

0 MAF (N=119)          

4.68 23.89 8.60 4.12 0.48 
PLSR 4 1.66 1.95 0.84 0.78 2.11   
ANN  11 0.41 0.82 0.99 0.96 >2.5 0.88 

3 MAF (N=120)     

4.52 20.34 7.65 2.81 0.37 
PLSR 3 1.63 2.08 0.66 0.46 1.35   
ANN  13 1.34 1.09 0.77 0.85 >2.5 1.01 

6 MAF (N=120)    

4.21 22.80 7.97 3.28 0.41 
PLSR 3 1.8 2.02 0.69 0.62 1.62   
ANN  14 1.14 1.5 0.88 0.79 2.18 0.96 

9 MAF (N=120)     

4.01 17.44 7.55 2.31 0.31 
PLSR 5 1.19 1.35 0.73 0.66 1.71   
ANN  13 0.95 1.18 0.83 0.74 1.96 1.1 

12 MAF (N=120)    

4.44 12.93 7.14 2.13 0.30 
PLSR 3 1.14 1.26 0.71 0.66 1.69   
ANN  11 0.88 0.93 0.83 0.81 2.29 0.87 

15 MAF (N=120)     

4.38 15.94 7.69 2.37 0.31 
PLSR 4 1.08 1.18 0.79 0.76 2.01   
ANN  14 0.82 0.34 0.88 0.98 >2.5 0.79 

18 MAF (N=120)    

4.03 16.07 8.14 2.51 0.31 
PLSR 4 1.03 1.13 0.83 0.8 2.22   
ANN  13 0.5 0.94 0.96 0.86 >2.5 0.99 

21 MAF (N=120)     

3.72 21.85 7.12 3.20 0.45 
PLSR 3 1.21 1.4 0.86 0.82 2.29 1.16 
ANN  18 0.64 1.84 0.96 0.67 1.74   

24 MAF (N=118)    

4.99 33.19 12.08 6.34 0.52 
PLSR 4 2.84 3.29 0.8 0.73 1.93   
ANN  18 0.9 2 0.98 0.9 >2.5 0.89 

ALL MAF (N=1074)     

3.72 33.19 8.33 3.86 0.46 
PLSR 4 2.44 2.49 0.59 0.57 1.55   

ANN  15 1.85 2.15 0.77 0.69 1.79 1.55 

SD – Standard deviation; CV – Coefficient of variation; NPC – optimal number of principal components; RMSEC – Root mean square error of calibration; RMSEP – Root mean square error of prediction; 

R2
C – Coefficient of determination for calibration; R2

P – Coefficient of determination for validation; RPD – Ratio of performance to deviation. Prediction deviations are computed as a function of the 

model error, the sample leverage (a measure of how extreme an unknown data point is compared to the majority), and the sample residual variance.
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Figure 4.28. Score plots of PLSR models for the first 2 principal components explaining the 

most variance. Scores further out the scatter plot are extreme observations measured mostly 

in HS samples 
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Figure 4.28. (continuation) Score plots of PLSR models for the first 2 principal components 

explaining the most variance. Scores further out the scatter plot are extreme observations 

measured mostly in HS samples 
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Figure 4.28. (continuation) Score plots of PLSR models for the first 2 principal components 

explaining the most variance. Scores further out the scatter plot are extreme observations 

measured mostly in HS samples 
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Figure 4.28. (continuation) Score plots of PLSR models for the first 2 principal components 

explaining the most variance. Scores further out the scatter plot are extreme observations 

measured mostly in HS samples 

 

Figure 4.29 shows regression coefficients for the PCs that explained the most variance in the 

PLSR models and illustrates contributions of each spectral variable to the significant variation 

in the SOM data, detecting which spectral variables are most significant for predicting SOM 

content. Visible parts of the spectrum, namely 410 - ~550 nm and ~550 - ~620 nm, and NIR 

region > 1000 nm were identified as zones of major importance in all models.  
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Figure 4.29. Variable importance projection for PLSR models calibrated at each sampling 

period to predict SOM content. Dark blue indicates statistically significant wavelengths (nm) 
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Figure 4.29. (continuation) Variable importance projection for PLSR models calibrated at each 

sampling period to predict SOM content. Dark blue indicates statistically significant 

wavelengths (nm) 
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Figure 4.29. (continuation) Variable importance projection for PLSR models calibrated at each 

sampling period to predict SOM content. Dark blue indicates statistically significant 

wavelengths (nm) 

 

4.6.2. Comparison of models obtained from in-situ and laboratory reflectance measurements  

 

The measured soil moisture on these two occasions is shown in Table 4.7, and was on average 

37.3% and 22.9 %, respectively. Results of the partial least regression (PLSR) model 

calculated using spectral and SOM (%) data are shown in Figure 4.30. The independent 

(predictor) input was the raw reflectance data in the range from 410-1050 nm. The dataset was 

split in two parts: calibration (50%) and validation (50%). 

Figure 4.30 shows the relationship between the measured and predicted SOM content in the 

calibration and validation datasets. Four PCs summarised the most variation in the laboratory 

VNIR dataset, and 6 PCs in-situ VNIR dataset. The PLSR model adequately predicted 

variations in SOM content in both laboratory and in-situ VNIR spectroscopy, with R2
p=0.62 and 

R2
p=0.64, respectively. According to the RPD values (laboratory RPD=1.62; in–situ 

RPD=1.67), both models yielded fair models and may be used for further prediction for soil 

mapping purposes (Table 4.8). 
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Table 4.7. Average moisture (%) content of all soil samples taken 3 and 15 months after the 

wildfire (N=120) 

 Time 

 3 MAF 15 MAF 

N 60 60 

Min 27.50 13.49 

Max 53.85 31.45 

Mean 37.33 22.88 

SD 7.25 4.95 

CV 0.19 0.22 

SD – Standard deviation; CV – Coefficient of variation 
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● calibration ● validation 

 

● calibration ● validation 

 

 

 

 

 

 

 

 

 

 

 

 

● calibration ● validation 

Figure 4.30. Results of the PLSR model showing relationship between predicted and observed 

SOM content (%) using a) laboratory and b) in-situ raw reflectance data  

 

For ANN modelling, the input predictors were the PCA scores of raw reflectance data. Twenty-

four (24) and twenty-seven (27) PCs summarised the most variation in the laboratory and in-

situ VNIR dataset, respectively. ANN model adequately predicted variations in SOM content 

in both laboratory and in-situ VNIR spectroscopy with R2
P= 0.64 and R2

P= 0.72, respectively. 

According to the RPD values (laboratory RPD=1.67; in–situ RPD=1.75), both models 

performed better than PLSR models, and may be used for further prediction for soil mapping 

purposes, where large numbers of analyses are usually preferred (Table 4.8). 

 

  

a 
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Table 4.8. Model performance of laboratory (air dry) and in situ (field moist) spectroscopy  

Dataset summary Model performance 

MIN MAX MEAN SD CV  
NP
C 

RMSEC 
RMSE

P 
R2

C R2
P RPD 

Laboratory VNIR (N=240)        

4.38 20.34 7.67 2.59 
0.3
4 

PLSR 4 1.51 1.6 0.66 0.62 1.62 
ANN  24 1.24 1.55 0.77 0.64 1.67 

In-situ VNIR (N=240)  

4.38 20.34 7.67 2.59 
0.3
4 

PLSR 6 1.41 1.55 0.7 0.64 1.67 
ANN  27 0.52 1.37 0.96 0.72 1.75 

 SD – Standard deviation; CV – Coefficient of variation; NPC – optimal number of principal components; RMSEC – Root mean 

square error of calibration; RMSEP – Root mean square error of prediction; R2
C – Coefficient of determination for calibration; R2

P 

– Coefficient of determination for validation; RPD – Ratio of performance to deviation
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4.6.3. Comparison of models obtained from laboratory (hyperspectral) and satellite 

(multispectral) reflectance measurements  

 

Results of the partial least regression (PLSR) model calculated using spectral and SOM (%) 

data are shown in Figure 4.31. In the laboratory-based modelling using hyperspectral 

reflectance, the independent input (predictor) was the raw reflectance data spanning the range 

of 410-1050 nm. On the other hand, for the modelling utilising satellite-based reflectance, the 

inputs comprised eight VNIR  bands and two SWIR bands extracted from the respective pixels 

of Sentinel-2 images (see table 3.4).The datasets were split in two parts: calibration (50%) and 

validation (50%). 

Figure 4.31 shows the relationship between the measured and predicted SOM content in the 

calibration and validation datasets. Eight (8) PCs summarised the most variation in the 

laboratory VNIR dataset, and five (5) PCs Sentinel-2 dataset. The PLSR model adequately 

predicted variations in SOM content in VNIR spectroscopy, with R2
P=0.58, however it was 

inadequate for the Sentinel-2 dataset with R2
p=0.33. According to the RPD values, only 

laboratory calibrations provided a fair model (RPD=1.58), while Sentinel-2 calibrations 

produced a poor model (RPD=1.17) that can only distinguish between high and low SOM 

content (Table 4.9).
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● calibration ● validation 

 

 

 

 

 

 

 

 

 

 

 

 

● calibration ● validation 

Figure 4.31. Results of the PLSR model showing relationship between predicted and observed 

SOM content (%) using a) laboratory hyperspectral and b) Sentinel-2 multispectral reflectance 

data (N=28) 

 

For ANN modelling of the laboratory VNIR data, the input predictors were the PCA scores of 

raw reflectance data. Thirteen (13) PCs summarised the most variation in the dataset, and 

ANN model adequately predicted variations in SOM with R2
P= 0.74 and RPD= 1.97, indicating 

a good model.  

PCA was not necessary for ANN modelling of the Sentinel-2 data, because it consisted of only 

10 bands for 28 samples (as explained in chapter 3.4). The ANN model performed better than 

  

a 
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the PLSR model for multispectral data, and adequately predicted variations in SOM with R2
P= 

0.88 and RPD= 1.48, indicating a fair model (Table 4.9).  

 

Table 4.9. Model performance of laboratory and Sentinel-2 reflectance data  

Dataset summary Model performance 

MIN MAX MEAN SD CV  NPC RMSEC RMSEP R2
C R2

P RPD 

Laboratory VNIR         

5.46 9.70 7.02 1.14 0.16 
PLSR 8 0.3 0.72 0.93 0.58 1.58 

ANN  13 0.28 0.58 0.94 0.74 1.97 

Sentinel-2   

5.46 9.70 7.02 1.14 0.16 
PLSR 5 0.73 0.97 0.56 0.33 1.17 

ANN  - 0.77 0.77 0.88 0.88 1.48 

SD – Standard deviation; CV – Coefficient of variation; NPC – optimal number of principal components; RMSEC – Root mean 

square error of calibration; RMSEP – Root mean square error of prediction; R2
C – Coefficient of determination for calibration; R2

P 

– Coefficient of determination for validation; RPD – Ratio of performance to deviation 

 

Figure 4.32 shows regression coefficients for the PCs that explained the most variance in the 

PLSR models and illustrates contributions of each spectral variable to the significant variation 

in the SOM data. According to proximal-derived regression coefficients, peaks in the 410-700 

nm can be identified as zones of major importance, while satellite derived regression 

coefficients show B8 and B11, recording wavelengths at 842 and 1610 nm, respectively, as 

spectral variables most significant for predicting SOM content. 
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Figure 4.32. Variable importance projection for PLSR models calibrated from the same dataset 

at 0 MAF but measured with proximal (ASD) and satellite (Sentinel-2) sensors to predict SOM 

content. Dark blue indicates statistically significant wavelengths (nm) 
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4.7. Geostatistical univariate and multivariate modelling and mapping of 

SOM  

 

 Results of the descriptive parameters of SOM, soil pH, EC and CaCO3 content are shown in 

Chapters 4.3 and 4.4. SOM, soil EC and CaCO3 content showed non-normal distribution and 

were transformed, however due to inability of normalisation of the CaCO3 data, the decision 

was made to use the original dataset in the analysis. Figure 4.33 shows the correlation matrix 

of the measured soil properties, along with the correlation matrix of average reflectance data 

and the two most significant Sentinel-2 bands (B8 and B11) for predicting SOM content (see 

Figure 4.32). Significant positive correlations were observed between soil pH, EC, and CaCO3 

content with SOM. Among these correlations, the strongest was found between SOM and EC 

(0.54), while the weakest was observed between SOM and soil pH (0.24). In contrast, the 

correlation coefficient for average reflectance data displayed a significant negative correlation 

with SOM, measuring -0.13. Regarding the Sentinel-2 bands, B8 exhibited a significant positive 

correlation with SOM (0.12), whereas B11 did not show a significant correlation. For this 

reason, only B8 was used as a covariate in the OCK method. 

 

The variogram characteristics (nugget, sill, range) and best fit models for 0-24 MAF data is 

shown in Table 4.10. The pure nugget effect was recorded immediately post-fire (at 0 MAF) 

and at 15 MAF in OK method, and at 0, 9, 12 and 15 MAF in OCK method when using CaCO3 

as a covariate. Overall, a larger nugget was observed in all OK methods throughout the study 

period (0.89-28.4), compared to OCK (0.001-16.6). Nugget/Sill ratio in OK varied from 10% to 

74%, indicating strong to moderate spatial dependence of SOM content. The ratio in OCK with 

EC as a covariate varied from <0.1% to 19%, which shows strong spatial dependence of SOM 

content. In the case of pH as a covariate, the ratio varied from 4% to 97%. This suggests a 

range of spatial dependence, from strong to weak, in relation to SOM content. For CaCO3 as 

a covariate, the ratio spanned from 2.2% to 30%, indicating a range of spatial dependence 

from strong to moderate with respect to SOM content. 

When average reflectance was used as a covariate, the ratio showed a range of 0.4% to 97%, 

implying a variety of spatial dependence levels, ranging from strong to weak, in relation to 

SOM content. Throughout the majority of the research period, the relative improvement (RI) of 

the prediction accuracy was best in OCK with EC as a covariate, and varied from 4% (observed 

at 15 MAF) to 27% (observed at 3 MAF). Only at 0 MAF and 15 MAF, the RI was best in OCK 

with average reflectance as a covariate, with respective values of 23% and 15%. Figure 4.34 

shows the final post-fire SOM content maps obtained with the most accurate method for each 

specific sampling period. 
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⁎⁎⁎ Correlation is significant at the 0.05 level 

Figure 4.33. Correlation matrix of the measured soil properties, average reflectance values 

measured with a proximal (ASD) sensor and two Sentinel-2 bands most significant for 

predicting SOM content
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Table 4.10. Model parameters fitted for semivariogram of SOM and cross-semivariograms between SOM and selected covariables   

Time  Method Model  C0  C  Range (m)  C0/C0+C (%) 
Spatial 

dependence  
RMSE  RI (%)  

0 MAF  

OK Gauss 19.13 0 74.34 - no 1.01  
OCK_EC Exp 0.03 723.3 18.98 <0.1 strong 0.83 +17.8 
OCK_pH Stable 0.5 0.59 19.28 46 moderate 0.83 +17.8 
OCK_CaCO3 Exp 0.04 0 74.34 - no 1.01 0.0 
OCK_Reflectance Stable 0.001 0.05 18.98 2 strong 0.78 +22.8 
OCK_Sentinel J-Bess 0.002 0.008 38.61 20 strong 0.98 +3.0 

3 MAF  

OK Gauss 6.68 2.29 423.1 74 moderate 1.07  
OCK_EC Exp 0.5 121.76 18.98 0.4 strong 0.78 +27.1 
OCK_pH Stable 0.43 0.45 26.6 49 moderate 0.91 +15.0 
OCK_CaCO3 Exp 0.04 0.61 18.98 6 strong 0.88 +17.8 
OCK_Reflectance Stable 0.002 0.03 22.12 6 strong 0.87 +18.7 

6 MAF  
 

OK Gauss 2.47 12.91 39.27 16 strong 1.01  
OCK_EC Exp 2.3 349.58 23.31 1 strong 0.81 +19.8 
OCK_pH Stable 0.03 0.75 50.06 4 strong 0.89 +11.9 
OCK_CaCO3 J-Bess 0.03 1.32 37.66 2.2 strong 0.89 +11.9 
OCK_Reflectance Sph 0.002 0.02 51.13 9 strong 0.88 +12.9 

9 MAF 

OK Exp 0.89 7.87 42.72 10 strong 0.94  
OCK_EC Exp 5.5 98.87 42.72 5 strong 0.8 +14.9 
OCK_pH Exp 0.006 0.47 19.28 1 strong 0.89 +5.3 
OCK_CaCO3 Exp 0.02 0 270.31 - no 0.93 +1.1 
OCK_Reflectance K-Bess 0.003 0.07 19.38 4.1 strong 0.92 +2.1 

12 MAF 

OK Rat.Q. 2.38 3.86 46.73 38 moderate 0.93 
 
 

OCK_EC K-Bess 16.6 70.76 48.22 19 strong 0.81 +12.9 
OCK_pH Exp 0.16 0.34 42.84 32 moderate 0.87 +6.5 
OCK_CaCO3 Exp 0.08 0 46.84 - no 0.89 +4.3 
OCK_Reflectance Stable 0.7 0.02 52.2 97 weak 0.89 +4.3 

15  MAF 

OK Exp 3.92 0 423.1 - no 1 
 
 

OCK_EC Stable 9.29 38.04 32.84 20 strong 0.96 +4.0 
OCK_pH Stable 0.18 0.006 57.09 97 weak 0.98 +2.0 
OCK_CaCO3 Exp 0.01 0 38.06 - no 0.99 +1.0 
OCK_Reflectance J-Bess 0.001 0.01 27.6 9 strong 0.85 +15.0 

18 MAF 

OK Exp 3.34 3.94 43.86 46 moderate 0.91  
OCK_EC Stable 0.3 58.48 52.2 1 strong 0.81 +11.0 
OCK_pH Stable 0.03 0.26 42.72 10 strong 0.87 +4.4 
OCK_CaCO3 Sph 0.004 0.15 42.95 3 strong 0.82 +9.9 
OCK_Reflectance Sph 0.003 0.02 44.1 13 strong 0.89 +2.2 

21 MAF 

OK Rat.Q. 2.69 9.72 73.46 22 strong 0.85 
 
 

OCK_EC Stable 5.12 1205 104.24 0.4 strong 0.72 +15.3 
OCK_pH Stable 0.04 0.53 47.29 7 strong 0.84 +1.2 
OCK_CaCO3 Exp 0.03 0.07 49.97 30 moderate 0.84 +1.2 
OCK_Reflectance Exp 0.001 0.004 74.57 20 strong 0.83 +2.4 

24 MAF 

OK Rat.Q. 28.4 22.53 403.63 56 moderate 1.08  
OCK_EC Stable 0.5 256.04 28.99 0.2 strong 0.88 +18.5 
OCK_pH Stable 0.21 0.37 19.84 36 moderate 0.98 +9.3 
OCK_CaCO3 J-Bess 0.05 0.34 56.37 13 strong 1.01 +6.5 
OCK_Reflectance J-Bess 0.003 0.007 63.71 30 moderate 1.02 +5.6 

C0 – Nugget; C – Partial Sill; C0/C0+C – Nugget/Sill ratio; RMSE – Root mean square error; RI – Relative improvement; OK – Ordinary kriging; OCK – Ordinary cokriging; Gauss – Gaussian model; Exp – Exponential model; J-

Bess – J-Bessel model; Sph – Spherical model; K-Bess – K-Bessel model; Rat.Q. – Rational Quadratic model
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Figure 4.34. Post-fire soil organic matter (SOM) content maps for the 2-year study period (0-

24 months after fire MAF). Different shapes denote vegetation species (circles indicate 

samples under Quercus pubescens Willd.; triangles indicate samples under Juniperus 

communis L.) and different colours denote wildfire severity (green - C; orange - MS; red - HS) 
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Figure 4.34. (continuation) Post-fire soil organic matter (SOM) content maps for the 2-year 

study period (0-24 months after fire MAF). Different shapes denote vegetation species (circles 

indicate samples under Quercus pubescens Willd.; triangles indicate samples under Juniperus 

communis L.) and different colours denote wildfire severity (green - C; orange - MS; red - HS) 
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Figure 4.34. (continuation) Post-fire soil organic matter (SOM) content maps for the 2-year 

study period (0-24 months after fire MAF). Different shapes denote vegetation species (circles 

indicate samples under Quercus pubescens Willd.; triangles indicate samples under Juniperus 

communis L.) and different colours denote wildfire severity (green - C; orange - MS; red - HS) 



 

103 

 

 

Figure 4.34. (continuation) Post-fire soil organic matter (SOM) content maps for the 2-year 

study period (0-24 months after fire MAF). Different shapes denote vegetation species (circles 

indicate samples under Quercus pubescens Willd.; triangles indicate samples under Juniperus 

communis L.) and different colours denote wildfire severity (green - C; orange - MS; red - HS) 
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Figure 4.34. (continuation) Post-fire soil organic matter (SOM) content maps for the 2-year 

study period (0-24 months after fire MAF). Different shapes denote vegetation species (circles 

indicate samples under Quercus pubescens Willd.; triangles indicate samples under Juniperus 

communis L.) and different colours denote wildfire severity (green - C; orange - MS; red - HS) 
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5. DISCUSSION 

 

5.1. Soil organic matter content after the wildfire 

 

The first objective of this study was to monitor the temporal distribution of SOM content after 

a wildfire. A significant increase in SOM content in the HS samples compared to MS and C 

was recorded in the first 9 MAF (by 35 to 48%), which indicated that incorporation of burned 

material (ash, charred foliage and bark, dead roots, burned grass-bed) into the soil profile 

occurred.  The SOM content in MS increased significantly (by ~9%) in the immediate post-fire 

period (0 MAF), and was higher than in C in the following post-fire period (although not 

significantly), suggesting that the incorporation of burned material occurred, but was not as 

pronounced as in HS. These findings are consistent with previous studies that have shown 

that wildfires can result in the incorporation of burned material into the soil, leading to an 

increase in SOM content (Ping et al., 2022; Šestak et al., 2022; Francos et al., 2018b). In the 

following period of 12-21 MAF the SOM content in HS was still elevated compared to C, 

although not significantly (see Figure 4.8), probably because of an onset of slow vegetation 

regrowth and recovery, which was first observed in HS in the study field in the spring following 

the wildfire (6 MAF). However, as discussed in chapter 4.2., during the entire 2-year study the 

vegetation recuperation in HS was slower than in MS, which certainly caused reduced nutrient 

demand and uptake. This probably resulted in the accumulation of soil nutrients, as well as 

SOM.  

No change in SOM content was observed in MS compared to C throughout the study period, 

with the exception of 0 MAF and 24 MAF. At 24 MAF a significantly lower content was recorded 

in MS compared to C, indicating intensive and ongoing vegetation regeneration in these areas 

affected by a wildfire of medium severity, as also supported via visual observations of post-fire 

vegetation recovery of the wildfire affected area. 

Intensive post-fire vegetation recovery was also observed by Fuentes-Ramirez et al. (2022) 

who measured plant species richness and plant abundance following a 2015 wildfire in the 

south-central area of Chile. They reported the increase in species richness of 93% in MS, and 

70% in HS areas in the third year after the wildfire, as well as an increase in species mean 

abundance per hectare throughout the 3-year study period.  

Similarly, Arroyo-Vargas et al. (2019) observed that mean vegetation abundance tended to 

increase over time across the low, medium and high severity levels, but especially in low to 

medium severity.  
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In both MS-J and MS-Q, combustion of the organic material occurred at a lesser extent 

compared to HS-J and HS-Q, which caused a lower amount of ash produced by the wildfire 

and deposited on soil surface. This could explain why the increase of SOM content was less 

pronounced in MS compared to HS in both vegetation types. Additionally, the recuperation of 

vegetation on all MS sites was visible as early as 3 MAF, and in HS at 6 MAF a slow regrowth 

was visible. The intensive regrowth and regeneration of vegetation in MS would not be possible 

without increased nutrient uptake originating from ash accumulation and SOM mineralization, 

and this is probably what caused a significant decrease in SOM content at 24 MAF. This 

supports the previous studies that low and medium severity wildfires generally have a more 

neutral or even beneficial effect on ecosystem recovery compared to high severity wildfires 

(Yang et al., 2021; Pereira et al., 2017; Alcañiz et al., 2016; Inbar et al., 2014).  

The increase of post-fire SOM was also reported by Muráňová and Šimanský (2015), who 

recorded a 24% increase in SOC content in HS in the immediate post-fire period. Interestingly, 

they reported the increase of the amount of post-fire SOC content, but at the same time its 

quality worsened due to deterioration of humic to fulvic acid ratio. Unfortunately, this study did 

not address the detailed breakdown and the nature of post-fire SOM, and is in this sense, 

limited to extrapolating some deductions based solely by measure of increase or decrease of 

SOM. Future studies should further investigate the nature of post-fire SOM in a sense of its 

quality, so as to confirm or deny the findings reported in this and other studies. 

Contrary to Muráňová and Šimanský (2015), Moya et al. (2019) reported SOC decrease in 

high severity areas 3 years after a wildfire in a mountainous region of south-eastern Spain, but 

noticed its content was dependent on vegetation recovery i.e., in plant recovered areas SOC 

content was higher than in unrecovered areas. This could be explained by the fact that due to 

removal of vegetation the amount of fresh organic material (leaves and other rapidly 

decomposing plant parts rich in C) is reduced in the short-term, and increased as vegetation 

gradually recovers. This indicates that high severity wildfires cause a discontinuation of 

established SOC patterns in mountainous regions, where erosion prevents the retention of soil 

nutrients long enough for the recovery of vegetation to begin, and the absence of vegetation 

prevents the normalisation of the nutrients and SOM content in the soil. Similar observations 

were made in a study by Francos et al. (2018a) that observed post-fire SOM decrease and 

attributed it to post-fire vegetation consumption, and subsequent erosion and leaching 

processes. They observed that high severity wildfire is a long-term disturbance in sloped 

terrains because it triggered erosion processes that disabled vegetation recovery.  

However, considering the terrain configuration and favourable initial soil properties in this study 

(Table 3.1), post-fire soil erosion did not occur, and favourable weather conditions (Figure 4.1) 

enabled vegetation recovery in both MS and HS, although at different rates. The absence of 

full vegetation recovery in HS during the study period was probably influenced by higher 
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temperature reaches of the wildfire rather than terrain configuration. The absence of erosion 

processes in the study field favoured the build up of SOM in HS, especially in the first 12 MAF 

(Figure 4.9), after which the SOM content decreased as vegetation recovered. Vegetation 

recovery in MS was observed as early as 3 MAF, probably due to the overall lower temperature 

reached during wildfire on these sites coupled with partial combustion of biomass, which 

resulted in more favourable conditions for vegetation recovery. Thus, an increase of SOM was 

observed in MS in the immediate post-fire period, and rather than accumulating, it served as 

a source of nutrients for vegetation resprouting and regrowth. Significant decrease of SOM in 

MS was observed compared to C at a period of intense vegetation regrowth, namely at 24 

MAF.  

 

The influence of vegetation species on post-wildfire SOM can vary based on several factors, 

including their ecological roles, physiology, and interactions with other organisms (Fultz et al., 

2016; Pasta et al., 2016; Van Auken and Smeins, 2008; Iglesias et al., 1997). In this study 

there was no significant relationship between the severity of a wildfire and the type of 

vegetation present in the area affected by the wildfire. This suggests that the severity of the 

wildfire did not depend on the type of vegetation in the area. The results did indicate that the 

mean SOM content is higher in areas with Quercus p. than in those with Juniperus c., with 

differences observed in C, MS, and especially HS. The higher SOM content in C-Q compared 

to C-J could suggest that Quercus p. is more effective in contributing to SOM formation than 

Juniperus c. Additionally, the higher SOM content in HS-Q compared to HS-J in the first 3 MAF 

(see Figure 4.10) could suggest that the decomposition of Quercus p. litter contributes more 

to SOM formation than Juniperus c, particularly in the early stages after a wildfire. 

Given that Quercus p. is a deciduous tree with broad leaves that can thrive in dry environments, 

and has the potential to enhance the development of mycorrhizal fungi - which are essential 

for both plant growth and SOM accumulation (Iannaccone et al., 2020) - it is plausible to 

suggest that in a situation following a wildfire, Quercus p. has a more prominent role in 

promoting soil fertility by stimulating soil microbial activity and the cycling of nutrients. On the 

other hand, Juniperus c. is a coniferous shrub that is well adapted to harsh and dry conditions 

but experiences significant seed mortality in the aftermath of wildfires and does not possess 

the capability to regenerate via resprouting (Blanco-Sacristán et al., 2023). However, 

Juniperus c. can influence SOM by increasing soil moisture retention, and it can also create 

microsites that support SOM accumulation by providing shelter and nutrients for other plant 

species (Blanco-Sacristán et al., 2023; Van Auken and Smeins, 2008; García et al., 1999). 

In general, the influence of Quercus p. and Juniperus c. on post-wildfire SOM can be 

complementary. While Quercus p. can contribute to early-stage SOM formation, Juniperus c. 

can support long-term SOM accumulation by promoting soil stability and facilitating the growth 
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of other plant species. However, the exact nature and magnitude of these effects require 

further investigation to fully understand the role that each species plays in SOM dynamics, 

particularly in the context of post-wildfire ecosystems. Such research could help inform 

management strategies for restoring and maintaining healthy soils in areas affected by 

wildfires. 

 

5.2. Other soil properties  

 

Soil pH was significantly higher on both MS and HS than on C taken under both vegetation 

species during the entire study period. The increase in the immediate post-fire period (0 MAF), 

before the first precipitation event could primarily be attributed to the loss of organic acids and 

hydroxyl groups (-OH) during the oxidation process of burning (Heydari et al., 2017). In the 

following months, i.e. 3 and 6 MAF, and after the first precipitation events, pH values in HS 

were steadily increasing, which can be attributed to ash (rich in base cations) incorporation 

into the soil profile (Pereira et al., 2019; Alcañiz et al., 2018). At the same time, the vegetation 

was still scarce in HS in 6 MAF, the soil surface was exposed and there was no competition 

for nutrients, which ultimately led to pH values increasing in the 0-6 MAF period, with maximum 

values observed in 6 MAF (see Figure 4.12). In MS areas, soil pH was consistently higher than 

C, although not to such an extent as in HS. The peak pH values were also observed in 6 MAF, 

indicating the period in which ash was being incorporated into the soil profile enhanced by 

precipitation. Regrowth of vegetation in MS started as early as 3 MAF, and the soil surface 

was never as exposed as it was on HS areas, which indicates vegetation uptake of the 

nutrients released from ash. Furthermore, the soil surface was initially covered with less ash 

in MS, which also caused lower pH values in MS compared to HS.  

Although pH values followed the same pattern in both vegetation species, a slightly lower 

overall pH was observed in Quercus p. samples. This could be linked with the relationship 

between increasing SOM content and a decrease in pH due to the release of organic acids 

following SOM decomposition, as described in Huang et al. (2009). In this study, Quercus p. 

samples had a higher average SOM content and consequently lower pH values.  

Finally, it could be concluded that the first 6 months post-fire were characterised by intense 

base cation release enhanced by precipitation. In the following months, i.e. in the period from 

9 to 24 MAF, the pH values started to drop in both MS and HS (in both vegetation species), 

although they remained higher than C during the entire study period, which agrees with 

previous studies such as Granged et al. (2011) and Litton and Santelices (2003) that observed 

high pH values for up to two years post-fire. According to Granged et al. (2011), several factors 

should be considered when studying the return of soil pH to pre-fire levels, including climate, 
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soil type, ash accumulation, erosion processes, but most importantly, the regrowth of 

vegetation. According to Antos et al. (2003), in their study area, soil pH remained high until the 

dominant conifer vegetation had returned to the site. Therefore, the decrease in pH values 

between 9 and 24 MAF in both MS and HS in this study, particularly noticeable in MS samples, 

can be attributed to the main driving force of vegetation regrowth. 

Significantly higher EC values were observed in HS areas, especially in the immediate post-

fire period (0 MAF), while MS was not significantly different compared to C, as observed under 

both vegetation species (Figure 4.14). The highest EC values were recorded at 0 MAF in HS 

in both vegetation species, indicating high levels of soluble elements, which originated from 

the burning of organic matter and started accumulating in the soil, as also observed by Certini 

(2005). As previously mentioned, the vegetation recuperation in HS areas was lagging behind 

in comparison to MS, and as a result nutrient uptake was diminished, which led to nutrient 

accumulation in the soil surface. The absence of vegetation recuperation in HS could have 

further been promoted by high EC values, which negatively affected plant germination 

(Moreno-Casasola, 2011). 

By the next sampling period (3 MAF), an above average amount of precipitation occurred (see 

Figure 4.1), which caused increased ion leaching and decreased EC values in the entire area. 

This is most evident in the first 12 MAF, afterwards the EC values started to drop, possibly 

because of the onset of vegetation regrowth and uptake that has started to take place in HS 

areas as well. Similar results were observed by Pereira et al. (2017) and Muñoz-Rojas et al. 

(2016), who reported increased EC to be ephemeral and recorded its recovery to pre-fire levels 

within a year post-fire.  

In the case of Quercus p. and Juniperus c. vegetation, one possible reason why soil EC might 

be higher under Quercus p.  than under Juniperus c. could be related to differences in litter 

quality and decomposition rates. Quercus litter tends to have higher nutrient content and 

decomposes more quickly than Juniperus litter (Ayres et al., 2009). As a result, Quercus p. 

litter can release more dissolved ions into the soil, leading to a higher concentration of 

dissolved salts and a higher soil EC compared to Juniperus c. litter. Additionally, Quercus p.  

vegetation is typically associated with higher SOM content (as explained in chapter 5.1), which 

can also contribute to a higher soil EC. The higher SOM content can increase the cation 

exchange capacity of the soil, leading to a higher retention of cations in the soil solution, and 

consequently, a higher soil EC. 

The initial increase in CaCO3 content in HS areas was highest at 3 MAF. Afterwards it showed 

a declining trend throughout the study period (6-24 MAF), although it was still significantly 

higher compared to C and MS in both vegetation species. According to Goforth et al. (2005) 

the lighter ash colour produced by HS wildfires is due to an increase in the CaCO3 content, 

which is characterised as highly hydrophilic and soluble in water. The increase could be 
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attributed to the fact that white ash from completely combusted organic matter contains more 

alkaline oxides, which react with atmospheric CO2 and water vapour to form carbonates, as 

proposed by Goforth et al. (2005). Considering the soil type in the research area is Cambisol 

rich in weatherable minerals, it is not excluded that the high temperatures reached during the 

burning in HS were sufficient for the transformation of aluminosilicate minerals rich in calcium 

cations, such as feldspar. This explains the significantly higher content of carbonates in HS 

areas, and the absence of carbonates formation in MS samples. In MS areas, the temperatures 

reached during burning were simply not high enough for the transformation to occur. Similar 

results were reported by Pereira et al. (2012), who observed that CaCO3 content increases 

with increasing fire severity, however this conclusion needs to be verified in future research. 

Furthermore, it would seem that the weather conditions, i.e. above-average precipitation and 

favourable temperatures in September and October of 2020 favoured the process of 

dissolution of the CaCO3 formed during the wildfire, and the process was still ongoing 24 MAF 

as its content was still significantly higher compared to C and MS at that time. This is due to 

low solubility of CaCO3 at high soil pH (Ulery et al.,1993).  

 

5.3. Wildfire influence on soil reflectance 

 

The objective of determining the relationship of spectral reflectance and SOM content can be 

discussed by visually comparing the spectral reflectance curves. Visual evaluation of 

reflectance spectra and its first derivatives in Figures 4.15 – 4.24 exhibit patterns of reflectance 

typical for soil (Ben-dor et al., 2008b). As shown in Figures 4.15 – 4.18 differences between 

two wildfire severities and control are obvious in both vegetation species. Specifically, HS 

samples had the highest average SOM content, and therefore lowest average reflectance 

throughout the study period, whereas C samples had the lowest average SOM content causing 

highest average reflectance (see Figure 4.8). According to Francos et al. (2021), the modelling 

of SOM in soils of low content (< 0.6%) may lead to inaccurate estimations. This challenge 

was not met in the present study, given how the researched soils were rich in SOM from the 

start, and the wildfire, although moderate to high in its severity, caused an additional increase 

of its content (contrary to some research that recorded SOM combustion at high severities, ex. 

Moya et al., 2019; Francos et al., 2018a, Otero et al., 2015). At 0 MAF, green/yellow to red 

reflectance region (550 to 700 nm) decreased in burned areas. Similar results were obtained 

by Šestak et al. (2022) who reported the decrease of soil reflectance following wildfire in the 

same reflectance region on burned samples from Mediterranean Croatia. These results 

support the fact that SOM differences explain reflectance variation in the VNIR spectral region, 

namely higher SOM content decreases reflectance and vice versa (Baumgardner et al.,1986). 
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According to Zheng et al. (2016) and Tian et al. (2013), SOM content correlates with 

reflectance in the range from 500-700 nm the most. These observations in research conducted 

on various soil types, and including this study, lead to a conclusion that 500-700 nm range 

carries the majority of information on SOM that could be useful in developing universal models 

for estimating SOM in different types of soils, including ones affected by wildfires.   

Higher reflectance recorded at 24 MAF in MS samples compared to both C and HS supports 

the assumption of intensive vegetation regeneration during this period, favouring 

mineralization of SOM and nutrient uptake, as discussed previously in chapter 5.1., and 

observed in previous studies (Fuentes-Ramirez et al.,2022; Arroyo-Vargas et al., 2019). 

Figures 4.19 – 4.24 illustrated the seasonality of SOM changes. In C-J and C-Q samples 

(Figures 4.19 and 4.20), average reflectance was highest in the spring and summer months, 

reflecting SOM decrease during this time of vegetation growth and development, taking up 

nutrients produced by SOM mineralization. On the contrary, average reflectance was lowest 

during the colder months of autumn and winter. According to Wuest (2014) seasonal variation 

of SOM occurs due to variations in temperature, soil moisture, and plant growth, and as much 

as 13% of C variability can be explained by seasonal variation. Therefore, during the colder 

months of the year lower temperatures and vegetation dormancy favour SOM build up. The 

average reflectance shown in Figures 4.21 – 4.24 could illustrate the disturbance in the 

established seasonal SOM patterns and ongoing ecosystem restoration in both MS and HS. 

This is emphasised by the fact that the lowest average reflectance was not recorded in the 

autumn/winter season as expected, but in the spring and summer months, indicating the 

absence of vegetation regrowth and SOM accumulation. Some exceptions to these 

observations were noted, particularly in the average reflectance of the MS samples, where 

high average reflectance in summer indicates nutrient uptake and intense vegetation regrowth, 

leading to depleted SOM content. In the past, studies have mostly focused on a particular 

aspect of wildfire effects on the environment, such as vegetation response or soil properties 

following wildfire. Only recently researchers have shifted their focus to holistically examine the 

post-fire environmental response (see Fuentes-Ramirez et al., 2022; Fernández-García et al., 

2021; Kim et al., 2021; Huerta et al., 2020) and are advancing research by, for example, 

relating post-fire nutrient uptake by vegetation and post-fire nutrient variability. In this context, 

soil spectroscopy could be used in examining the temporal distribution of SOM following fire, 

thus proving to be a valuable tool in comprehensively exploring the effects of wildfire on 

environmental components. Further research is encouraged to gain detailed insight into post-

fire environmental interactions and to improve post-fire environmental management strategies. 
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5.4. Linear (PLSR) and non-linear (ANN) modelling of post-fire SOM 

 

5.4.1. PLSR vs. ANN models 

 

The next objective of this study was to determine the relationship of spectral reflectance and 

soil organic matter content using linear and nonlinear calibration models. In order to complete 

this objective, the entire reflectance dataset collected over the 2-year study period, as well as 

the subsets containing the data from each individual sampling period was subjected to 

predictive SOM modelling. Overall, nine (9) of each PLSR and ANN and one (1) of each PLSR 

and ANN model for the entire 0-24 MAF dataset were calibrated, tested and validated to predict 

SOM content from the gathered reflectance data. Validation models with minimal root mean 

square error of prediction (RMSEP) and the highest coefficient of determination (R2) indicated 

highest model accuracy. To compare the performance of the obtained models, ratio of 

performance to deviation (RPD) was calculated. 

In linear PLSR models, three to five PCs accounted for the most variation in spectral data, and 

The RMSEP values ranged from 1.13 to 3.29%, while R2 between measured and predicted 

SOM content ranged from 0.46 to 0.82.   

PLSR models computed for each sampling time provided fair to very good predictions (RPD= 

1.62 to 2.29), with an exception at 3 MAF which produced a poor model (RPD = 1.35, RMSEP 

= 2.08, R2 = 0.46). This was the only model that benefited from data smoothing procedure 

(Savitzky-Golay) that effectively preserved high frequency signal components and reduced 

noise (Savitzkly and Golay, 1964). However, still a large part of the variation in the model 

remained unexplained. This is probably related to the complex wildfire impacts on SOM and 

the effects of intrinsic factors that occurred in the immediate post-fire period. Namely, the 

formation of char and CaCO3 could have affected the linear VNIR-SOM relationship and 

behaviour of spectral curves. Incidentally, the highest CaCO3 content was observed at 3 MAF, 

indicating the post-fire formation of new forms of C (Cofer et al., 1997) and an ongoing complex 

process of post-fire soil recovery observed in other studies (Pereira et al., 2019; Francos et 

al., 2018a; Prendergast-Miller et al., 2017). These studies observed that the process of post-

fire soil recovery clearly shows a non-linear relationship, and this is why perhaps non-linear 

ANN models generally proved to be superior to PLSR models, as discussed below. As for the 

PLSR model obtained with the entire 0-24 MAF dataset, its accuracy and performance was 

inferior to individual models computed for each sampling period separately, with RMSEP of 

2.49, R2 of 0.57 between measured and predicted SOM content, and RPD value of 1.55 

indicating a fair model. These results emphasise the benefit of data segmentation during the 

short-term post-wildfire monitoring that enables us to model specific features of post-fire SOM 
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dynamics. It would seem beneficial for post-fire SOM monitoring to use models computed 

according to the specific stages of SOM dynamics, ie. to compute models segmented by the 

rate of soil regeneration and/or seasonal criteria, that take into account the speed and 

seasonality of soil changes. However, in order to reduce costs, a generalised model based on 

all available data could prove useful, if only to detect the direction of SOM recovery. 

 

For ANN modelling, eleven (11) to eighteen (18) PCs summarised the most variation in the 

reflectance datasets. By comparing the RPD performance the results showed that ANN 

outperformed PLSR models, with RPD values ranging from 1.74 to >2.5. The lowest 

performing model was obtained at 21 MAF, with an RPD value of 1.74, which still indicates a 

good model capable of quantitative SOM prediction. These results confirm that learning non-

linear ANN algorithms are able to correlate complex spectral information with the target 

variable, especially in the conditions of complex post-fire SOM dynamics. Similar results were 

obtained by Viscarra Rossel and Behrens (2010) who compared multiple data mining 

techniques, including PLSR and ANN for calibrating VNIR reflectance spectra to SOC, and 

confirmed the superiority of the ANN model that can detect complex non-linear interactions in 

the data. Furthermore, due to high computation power demand of ANN models, direct 

modelling using the entire VNIR spectra (641 wavelengths per sample) was not efficient. 

Therefore, the reduced data from the PCA analysis were used as input features in the form of 

PC scores, which resulted in satisfactory computational performance without losing important 

information on the reflectance – SOM relationship. In conclusion, non-linear models such as 

ANN should be used to estimate the field variability of SOM, especially in the complex 

conditions of post-fire soil dynamics.  

Regression coefficients computed from PLSR models shown in Figure 4.28 identified the 

important spectral variables most responsible for SOM prediction. Visible parts of the 

spectrum, namely 410 - ~550 nm and ~550 - ~620 nm, and NIR region > 1000 nm were 

identified as zones of major importance in all models. According to Ben-Dor et al. (2008b), 

changes in the mineral components (such as iron oxide) appear in the visible part of the 

reflectance spectrum as a combination of overtones attributed to specific chemical groups and 

their structural configuration, which mainly affect the slope of the spectral curve. The soil type 

investigated in this study (Cambisol) is rich in Fe oxide goethite that interacts with SOM and 

clay minerals having a significant influence on soil aggregation processes (Durn et al., 2019). 

The 410 - ~550 nm and ~550 - ~620 nm region is therefore revealed as a zone in which the 

absorption features of iron oxides affected the spectral curve slope, and therefore affected the 

calibration of SOM models in this study. 

Moreover, the > 1000 nm region could be significant for SOM modelling due to electronic 

transitions of goethite iron oxide at 920 nm, as proposed by Viscarra-Rossel and Behrens 
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(2010). Similar results have been reported in previous studies. Stevens et al. (2013) reported 

the high correlations between SOC content and reflectance around 540, 640 and 900 nm, and 

associated it to the absence or presence of iron oxides in the agricultural regions of Grand-

Duchy of Luxembourg. More importantly, Šestak et al. (2022) reported peaks from 450 – 600 

nm and 900 – 1050 nm as zones of major importance for modelling SOC content in burned 

soils of Mediterranean Croatia. 

 

 

5.4.2. In-situ vs. laboratory reflectance measurements 

 

As stated in Chapter 1.1, to compare the accuracy and precision of hyperspectral prediction 

models using laboratory and in situ measurements, reflectance data collected on 3 MAF and 

15 MAF were used. In this way, the same soil samples were measured in the most humid part 

of the year in a field-moist state. Measurements were repeated on the same soil samples after 

they were air-dried, ground, and sieved to compare the accuracy and precision of the soil 

spectra obtained in the laboratory and in the field. 

The PLSR models calculated for each condition provided fair predictions (laboratory 

RPD=1.62; in situ RPD=1.67), while ANN models performed better (laboratory RPD=1.67; in 

situ RPD=1.75). Contrary to expectations, the models obtained with in situ data performed 

slightly better on SOM estimates. Stevens et al. (2008) conducted a similar study on 

agricultural soils and found a slight decrease in the accuracy of field-scale compared to 

laboratory measurements of soil C. However, the same study reports that the accuracy of both 

in situ and laboratory measurements is satisfactory and concludes that the number of samples 

needed to adequately model soil C variability ranges from 7 to 129. The models in this study 

were built with 240 samples, so the sampling intensity was found to be sufficient for successful 

SOM estimation. According to Ben-Dor et al. (2008b), soil moisture alters soil refractive 

properties most strongly in the SWIR region, typically around 1400 and 1900 nm, which was 

not included in this study because the ASD spectroradiometer measured the range of 350-

1050 nm. Therefore, the wavelengths most sensitive to soil moisture were omitted from this 

study, which had a positive effect on the modelling procedure of the field-moist samples. 

Furthermore, in order to successfully acquire relevant spectral responses under field 

conditions, some general guidelines are usually followed, the most important of which is to 

obtain the measurements under constant weather conditions, ideally in absence of clouds that 

scatter solar irradiance and degrade the signal-to-noise ratio (Salisbury, 1998). The guidelines 

were followed in this study, and the field measurements were made on sunny days, which 
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allowed spectral data to be collected with a quality as similar as possible to spectral 

measurements made in the laboratory. 

These results indicate that the reflectance data collected in the field is sufficient for successful 

post-fire SOM modelling, which has some implications for the operational costs of future 

research. It implies the possibility of measuring reflectance data in situ, and taking a reduced 

number of samples for detailed laboratory analysis, which would significantly reduce labour 

intensity and increase measurement intensity if needed for research purposes. Similar opinion 

was given in a recent study by Li et al. (2022), who discussed the cost-effectiveness of 

reflectance spectroscopy for estimating SOC, and concluded that VNIR spectroscopy is more 

cost-effective than the dry combustion method, especially for large numbers of samples. They 

also recommend skipping the grinding of the collected samples in order to reduce sample 

preparation time. 

 

5.4.3. Hyperspectral vs. multispectral reflectance measurements  

 

One of the objectives of the study was to compare the accuracy and precision of hyperspectral 

and multispectral (satellite Sentinel-2) prediction models, and for that purpose a subset of 

reflectance data collected in the immediate post-fire period (0 MAF) was used (N=28, see 

Chapter 3.5.2). Due to the nature of optical sensors, data collection was not possible for later 

dates due to regrowth of vegetation, which obscured the bare soil pixels and disabled any 

further retrieval of spectral data.  

According to the RPD values of the obtained PLSR models, laboratory calibrations provided a 

fair model (RPD=1.58), while Sentinel-2 calibrations produced a poor model (RPD=1.17). 

According to Gholizadeh et al. (2018b) models with RPD values between 1 and 1.4 could still 

be used to distinguish between high and low SOM content. The coefficients of determination 

(R2) were 0.58 and 0.33 for laboratory and Sentinel-2 PLSR validation models, respectively, 

indicating that 58% of the SOM variance could be explained by the variance of the VNIR 

hyperspectral, but only 33% could be explained by Sentinel-2 multispectral data. 

On the other hand, ANN modelling showed significant improvements compared to PLSR. The 

RPD value calculated for the laboratory VNIR data was 1.97, indicating a good model, and 

1.48 for Sentinel-2 data, indicating a fair model. According to R2 for laboratory and Sentinel-2 

ANN models, 74% of the SOM variance could be explained by the variance of the VNIR 

hyperspectral and 88% could be explained by Sentinel-2 multispectral data. Considering the 

parameters used for evaluation of the accuracy and performance of models, the superiority of 

ANN comes into focus. These results further confirm that learning non-linear ANN algorithms 

can detect complex non-linear interactions in the post-fire soil environment.  
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Based on the given information, it is difficult to provide a direct answer to the question of the 

precision of satellites when used on a small area versus a large burned area. However, we 

can make some general observations regarding the use of Sentinel-2 data in this study. 

It is worth noting that Sentinel-2 data has a spatial resolution of 10 metres, which can be 

considered relatively high for remote sensing applications. However, the precision of satellite 

data can be affected by various factors, such as atmospheric conditions, sensor noise, and 

calibration errors, among others. Therefore, it is important to carefully process and validate the 

satellite data to ensure their accuracy for the specific application. In this study, the ANN model 

trained with Sentinel-2 data achieved a fair RPD value of 1.48 and a strong R2 value of 0.88, 

indicating a reasonable accuracy for predicting SOM content in the post-fire soil environment. 

However, it is possible that the precision of the Sentinel-2 data may be affected by the relatively 

small area under study, which can limit the ability to capture fine-scale variations in the soil 

properties. On the other hand, the laboratory VNIR data used in this study may provide higher 

precision due to the controlled conditions and high spectral resolution of the instrument. 

However, the laboratory data may not fully capture the spectral variations present in the field 

data, and may not be representative of the actual post-fire soil status. 

In summary, the use of laboratory data versus satellite data can have trade-offs in terms of 

precision and representativeness. However, the strong performance of the ANN model in this 

study suggests that it can effectively capture complex non-linear interactions in the post-fire 

soil environment, regardless of the data source. 

Furthermore, because vegetation regrowth occurred in MS and covered the soil surface as 

early as 3 MAF, this study only obtained and analysed remotely sensed data for the immediate 

post-fire period (0 MAF). Nevertheless, the successful utilisation of ANN model with 

multispectral data indicates that Sentinel-2 remotely sensed data has significant potential for 

monitoring SOM in burned areas, as long as the soil remains devoid of vegetation. 

 

Promising results were achieved in this study using ANN models and data extracted from 10 

Sentinel-2 bands, however considering the results of recent studies, these models could 

benefit from calculating and including multiple spectral indices as continuous variables, 

because they are expected to improve the model prediction capability (Liu et al., 2022b; 

Gholizadeh et al., 2018b, Jin et al., 2016). For example, Gholizadeh et al. (2018b) calculated 

18 different spectral soil and vegetation indices, extracted 10 Sentinel-2 bands and modelled 

SOC content using a non-linear modelling method (in this case Support Vector Machine 

Regression) in agricultural areas across Czech Republic. They reported RPD values of 1.6 – 

1.92 at different study areas, indicating fairly successful prediction models. Most recently, Liu 

et al. (2022b) recognized the need for new bare soil spectral indices to improve model accuracy 

in SOC mapping of bare soil pixels, which would undoubtedly prove beneficial in post-fire soil 
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monitoring using satellite sensor data. They reported the successful development of new bare 

soil indices that improved model accuracy (using Sentinel-2 data and non-linear models), with 

R2 value of 0.81 in an agricultural area in southeast Iowa State, USA.  

Furthermore, by analysing regression coefficients of the obtained Sentinel-2 models (Figure 

4.31), this study observed that B11 (1565-1655 nm) correlates with SOM content the most, 

and consequently highly affects SOM predictions, followed by B8 and 8a in the VNIR region 

(785-900 nm). These results can be attributed mainly to the previously discussed absorption 

features typical for soil spectral curves (see Chapters 2.3.1. and 2.3.2.) in the VNIR-SWIR 

region. In a study by Gholizadeh et al. (2018b), spectral bands providing the strongest 

correlations with SOC were B4 and B5 (650–713 nm) followed by B11 and B12 (1565–

2280 nm), which is somewhat similar to this study. This suggests the potential robustness of 

these bands in capturing variations in SOM particularly when considering various research 

conducted across many regions with distinct soil types while investigating the same 

phenomenon. As noted by Jin et al. (2016), different soil types can influence the sensitivity of 

satellite spectral bands to SOM content, and affect the way light interacts with the soil surface 

and is subsequently reflected back to the sensor. This inherent variability in soil characteristics 

across regions can result in divergent correlations between bands and SOM content, even 

when using similar remote sensing platforms and methodologies. 

  

In conclusion, as discussed in Chapter 5.4.1., these results strongly suggest that the freely 

available Sentinel-2 imagery is a cost-effective and valuable source of information for 

environmental monitoring purposes, especially in cases where intense soil sampling and a 

large number of laboratory analyses are needed. Similar to proximal in situ data collection, 

downloading freely available Sentinel-2 data could significantly reduce operational costs of 

future research, even if the predictions are less accurate than traditional methods.  Sentinel-2 

images provide a large information database, with high revisit time, as well as spatial and 

spectral resolution adequate for SOM monitoring on a local, regional and global scale. 

 

5.5. Geostatistical univariate and multivariate modelling and mapping 

 

The final objectives of this study were to compare the accuracy and precision of univariate with 

multivariate spatial models, and to monitor spatial distribution of SOM content after a fire. 

For univariate interpolation, ordinary kriging (OK) was used, and for multivariate interpolation, 

ordinary cokriging (OCK) method was used, with soil pH, EC, CaCO3 content and average 

reflectance as covariates. For 0 MAF exclusively, B8 was utilised as a covariate. The 

hypothesis was that univariate spatial models show less spatial dependence than multivariate 



 

118 

 

ones, which was assessed by interpreting nugget/sill ratio of the calculated semivariograms 

and cross-semivariogram.   

The pure nugget effect was recorded at 0 MAF and at 15 MAF in OK method, indicating spatial 

micro variability of SOM content caused by the effects of wildfire (Table 4.10). In cases of pure 

nugget effect, it is considered that interpolations of the target variables are not possible, due 

to the absence of statistical stationarity in the data. Pure nugget effect implies that the 

disturbance caused by the wildfire was significant, resulting in high variability at a small scale. 

Changes in spatial patterns of SOC following wildfire disturbance were also observed by Wang 

et al. (2019). To address this issue, a potential solution would be to increase the number of 

samples included in the model. By incorporating a larger number of samples, a more 

comprehensive representation of the spatial patterns and variability can be achieved.  

However, many studies recognized that auxiliary information (covariates), can be included in 

geostatistical modelling approaches to account for the remaining spatial variation (Qin et al., 

2022; Mirzaee et al., 2016; Lark, 2012). In this study, covariates that are more affordable and 

easier to measure (soil pH, EC and CaCO3), as well as collected average reflectance data and 

freely available Sentinel-2 data were used in OCK interpolations of SOM content. All of the 

covariates reduced nugget effects (C0 – OK = 0.89-28.4, C0 – OCK = 0.001-16.6) and RMSE 

(OKRMSE = 0.85-1.08, OCKRMSE = 0.72-1.02) throughout the study period. 

The reduced nugget effect indicates that by incorporating covariates, the OCK model can 

capture and account for some of the variability that would otherwise contribute to the nugget 

effect in OK.  

Spatial dependence increased the most in OCK with soil EC as a covariate (OCK_EC). It varied 

from <0.1% to 19%, which shows strong spatial dependence of SOM content compared to OK 

(OKnugget/sill = 10-74%). Strong spatial dependence observed in OCK_EC indicates a high 

degree of spatial correlation in the data and suggests that the EC covariate used in cokriging 

had effectively captured most of the remaining variation in the primary SOM variable. The 

strong spatial dependence is supported by the significant correlations observed between SOM 

and soil EC. Among all soil properties correlations, the strongest was found between SOM and 

EC (0.54), while the weakest was observed between SOM and soil pH (0.24).  

In the case of pH as a covariate (OCK_pH), the spatial dependence varied from 4% to 97%, 

which suggests a strong to weak spatial dependence. The weak spatial dependence observed 

in OCK_pH at 15 MAF could be explained by extrinsic factors, such as weather conditions 

(Cambardella et al., 1994). Namely, prior to soil sampling on 15 MAF, extreme precipitation 

was recorded in the study area, which may have influenced the overall spatial dependence 

observed in the dataset.  

For CaCO3 as a covariate (OCK_CaCO3) similar results were observed. The spatial 

dependence spanned from 2.2% to 30%, indicating a range of spatial dependence from strong 
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to moderate with respect to SOM content. However, at 0, 12 and 15 MAF a pure nugget effect 

was recorded in OCK_CaCO3  cross-semivariogram, indicating that there may be unexplained 

variability in SOM content that is not related to the CaCO3  covariate. For this reason, it is 

recommended that alternative covariates that may better capture the spatial patterns and 

reduce the nugget effect be considered in SOM mapping using OCK method.  

Average reflectance as a covariate for SOM mapping (OCK_Reflectance) increased spatial 

dependence from 0.4% to 97%. However, weak spatial dependence was observed at 12 MAF, 

indicating extrinsic factors influencing the overall spatial dependence observed in the dataset. 

In this case, the extrinsic factors could be extreme weather conditions and/or vegetation growth 

supported by nutrient uptake influencing the spatial dependence of soil properties during the 

time of the soil sampling at 12 MAF. 

Furthermore, OCK with B8 as a covariate (OCK_Sentinel) showed strong spatial dependence 

(20%) at 0 MAF. This result showed that Sentinel-2 data can provide useful information to 

improve SOM mapping. The strong spatial dependence is supported by the significant 

correlation observed between SOM and B8 (0.12). The potential for improving the quality of 

SOM mapping is significant as the availability of satellite imagery with higher spatial resolution 

continues to increase. 

Based on the relative improvement (RI) results of OCK method, EC would be the most suitable 

covariate to improve the accuracy of SOM modelling in this study. Throughout the majority of 

the research period, the RI of the prediction accuracy was best in OCK_EC, and varied from 

4% (observed at 15 MAF) to 27% (observed at 3 MAF). Only at 0 MAF and 15 MAF, the RI 

was best in OCK_Reflectance, with respective values of 23% and 15%.  

It is important to consider other factors and conduct a comprehensive analysis before 

concluding on the most suitable covariate for improving the accuracy of SOM content 

modelling. While EC shows promising results in terms of RI, the interplay of various covariates 

and their impact on different aspects of SOM dynamics should be thoroughly examined. 

Further research and experimentation are necessary to validate the robustness of EC as a 

covariate and to ensure its applicability across diverse soil types and environmental conditions.  

 

The best improvements in OCK compared to the OK method were observed at 0 MAF and 3 

MAF, which is probably due to higher SOM variability in the first 3 MAF. The use of auxiliary 

data in this time frame particularly reduced spatial error when using the OCK method. Ranges 

calculated for OCK_EC throughout the study period varied from 18.98 m (0 and 3 MAF) to 

104.24 m (21 MAF), indicating a fairly dense sampling grid is necessary in order to cover all of 

the post-fire SOM content variability. In this study, the randomised sampling procedure led to 

an uneven sampling grid, where some points were closer together, while others further apart. 

However, the mean distance between sampling points was 19.89 m, with minimal distance 
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between points of 5.43 m and maximal 54.1 m (see Chapter 3.2.), which leads to a conclusion 

that a fairly sufficient number of samples was acquired for this study. 

 

Moreover, the selection of the covariates proved successful under the conditions of consistent 

environmental variables such as slope and soil type in this study area. Similar results were 

confirmed by Jiang et al. (2022) who compared various spatial interpolation methods 

performance in different spatial scales in Sanjiang plain in northeast China. They concluded 

that on a larger spatial scale, qualitative environmental variables such as elevation and soil 

type can improve prediction accuracy; however, on a small scale where such variables are 

often consistent, quantitative variables are more useful as auxiliary information. 

 

The data acquired and analysed in this study provided short-term information on wildfire effects 

on SOM content on a local scale and provided some valuable insights into the direction of 

SOM recovery in the Mediterranean environment. Long-term studies (10-30 years) are 

encouraged for developing models that monitor the effects on SOM and to fully understand the 

spatial and temporal change in soil quality. 
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6. CONCLUSIONS 

 

The aim of this study was to monitor the spatio-temporal changes of post-fire soil quality using 

soil spectroscopy, remote sensing and geostatistic methods, which has so far not been done 

in the pedological and climatic conditions of Mediterranean Croatia.  

 

● HS wildfires led to a 21.72% increase in average SOM content, while MS wildfires 

showed no significant change compared to unburned samples. The intensive 

vegetation regrowth in MS was likely facilitated by increased nutrient uptake from SOM 

mineralization, explaining the significantly lower SOM content in MS compared to HS. 

This supports previous studies suggesting low severity wildfires benefit ecosystem 

recovery. 

 

● The spectral reflectance analysis revealed that soil reflectance is significantly affected 

by variations in SOM content resulting from different wildfire severities. The greatest 

spectral differences between C, MS and HS were found in green/yellow to red (500-

700 nm) region. This suggests that this region carries the majority of information on 

SOM that could be useful in developing universal models for estimating SOM in soils 

affected by wildfires.   

 

● The results of this study emphasise the advantage of data segmentation in short-term 

post-wildfire monitoring, allowing the modelling of specific features of post-fire SOM 

dynamics. While using models tailored to specific stages of SOM regeneration and 

seasonal criteria may be beneficial, a cost-effective approach could involve a 

generalised model based on all available data, with ANN models being recommended 

in such cases. 

 

● The identified important spectral variables most responsible for SOM prediction were 

in the visible part of the spectrum. Namely 410 - ~550 nm and ~550 - ~620 nm, and 

NIR region > 1000 nm contributed most to computation of principal components that 

carry most of the variation in spectral data, and those spectral regions were highly 

correlated with post-fire SOM content. 

 

● Contrary to expectations, in situ data performed slightly better than laboratory data for 

SOM estimates when used in models. This is attributed to the exclusion of the SWIR 
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region sensitive to soil moisture (1400 and 1900 nm) from the study and the developed 

models, which had a positive effect on the modelling procedure of the field-moist 

samples. Furthermore, if the general guidelines for in-situ measurements are followed 

(constant weather conditions, ideally no clouds), the data collected will be of sufficient 

quality for successful post-fire SOM modelling. This could reduce the labour intensity 

and increase measurement intensity if needed for research purposes. 

 

● Promising results were achieved in this study using ANN models and multispectral 

data, though these models could benefit from calculating and including multiple spectral 

indices as continuous variables, as suggested by some recent studies. These results 

strongly suggest that the freely available Sentinel-2 imagery represents a valuable 

source of information for environmental monitoring purposes, especially in the 

conditions of complex post-fire SOM dynamics where intense soil sampling and a large 

number of laboratory analyses are needed.  

 

● According to the relative improvement (RI) outcomes from the OCK spatial model, EC 

proved to be the optimal covariate for improving the accuracy of SOM modelling. Over 

the majority of the study period, the RI of prediction accuracy in OCK_EC ranged from 

4% to 27%. 

 

● The data acquired and analysed in this study provided short-term information on 

wildfire effects on SOM content on a local scale and provided some valuable insights 

into the direction of SOM recovery in the Mediterranean environment. Long-term 

studies (10-30 years) are encouraged for developing models that monitor the effects 

on SOM and to fully understand the spatial and temporal change in soil quality. 
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8. APPENDIX 

 

 

 

Figure 8.1. Residual variance of PLSR models acquired at each individual sampling period as 

well as the entire reflectance dataset 
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Figure 8.1. (continuation) Residual variance of PLSR models acquired at each individual 

sampling period as well as the entire reflectance dataset 

 


