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SUMMARY   

Of the master thesis written by Mihaele Trčak, titled: 

 

USE AND APPLICATION OF RNA INTERFERENCE IN PLANT PROTECTION: CASE STUDY ON 

WESTERN CORN ROOTWORM  

 

Despite the remarkable increase in pesticide use and advances in plant protection, the global 

crop loss due to pest damage has remained high. Some pests like western corn rootworm, 

Diabrotica virgifera virgifera LeConte have shown considerable ability to adapt to different 

management practices such as crop rotation, chemical pesticides, and biotechnological control. 

Therefore, there is a need for the development of new technologies which can be efficiently 

and sustainably used for managing economically important pests. One of the new technologies 

which show promising results in the control and management of western corn rootworm is RNA 

interference. It is a novel biotechnological tool which is based on a sequence-specific repression 

of gene expression by using small double-stranded RNAs. It can induce cessation of feeding and 

ultimately morbidity of pests. Since western corn rootworm management is a challenging task 

due to substantial adaptability and resistance to various management strategies, RNAi 

technology presents a valuable tool for WCR control. It is highly efficacious and considered as 

ecologically safe, but before the wider use of this technology, its weak points shall be 

considered.    

 

 

Keywords: RNAi, western corn rootworm, RNAi for western corn rootworm control, RNAi risk 

assessment, RNAi product registration 
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1. Introduction 

Plant pest damage poses a great threat to agricultural production since they often cause 

significant yield losses in agriculture. Despite substantial advances in plant protection 

strategies, agricultural production is still threatened by the pests which show great ability to 

adapt and adjust to different management strategies. Therefore, there is a need for the 

development of new methods, technologies, and products which can be used to combat and 

eradicate resilient pests. In the last two decades, scientists have been exploring the possibility 

of using RNA interference (RNAi) as a method to control pests and plant diseases. RNAi is a 

novel technology which is used as silencing machinery in posttranscriptional regulation of 

genes. It is used in genomics for determination of gene function, in biotechnology for pest and 

plant disease control and medicine as a therapeutic agent. The principle of RNAi is the 

sequence-specific degradation of mRNA induced by dsRNA homologous to the target sequence 

(Taxman, 2009). The uptake of dsRNA by feeding on transgenic plants producing specific dsRNA 

against pests causes pest lethality due to disruption of translation and cellular processes. It is 

the most promising method for pest control on a large scale.  

RNAi shows a great possibility for combating Western corn rootworm (Diabrotica virgifera 

virgifera LeConte) (Baum et al. 2007, Bolognesi et al., 2012, Fishilevich et al., 2016, Niu et al., 

2017) which is the most important economic pest of continuous maize cultivation in the US and 

Europe (Levine et al., 2002, Ivezić et al., 2009). Remarkably efficient RNAi response in both WCR 

larvae and adults upon ingestion of dsRNA caused increased interest in the feasibility of RNAi-

based technology for WCR management. For now, there are four registered RNAi-based plant 

incorporated protectant (PIP) products approved by the US EPA called “SmartStax PRO” which 

combine Bt traits and DvSnf7 dsRNA, designed to manage western corn rootworm in maize 

fields (US EPA, 2017).  

Although RNAi technology opened up new approaches towards modern pest management, 

there are still some uncertainties related to environmental safety, registration process and 

regulatory framework of RNAi-based products. The main uncertainties arising with the use of 
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RNAi-biopesticides are linked to the effects of non-target exposure, environmental exposure, 

and management of resistant pest populations. Nevertheless, environmental risk assessment 

done by the US EPA for registration of the first RNAi-based PIP, “SmartStax PRO” has shown 

that it is safe for widespread usage and has no adverse effects on environmental and human 

health (US EPA, 2016). Therefore, it is to be expected that the number of registered RNAi-based 

PIP will increase in future due to their efficacy, selectivity for specific target species, and the 

possibility to control resistant populations. 

1.1. Aims and objectives 

The aims of this thesis are: 

1. To give an overview of RNAi mechanism and possibilities of application in pest control 

2. To review existing achievements in the use of RNAi technology for WCR control 

3. To discuss the strong and weak points of RNAi technology 

4. To examine the possibility of using RNAi as a technology for WCR control on a global 

scale 
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2. RNAi technology  

RNA interference (RNAi) is a novel technology first discovered in plants, animals, and fungi and 

it is commonly used as silencing machinery in posttranscriptional regulation of genes. Since its 

discovery by Fire at al. (1998), it has been thoroughly studied and its potentials have been 

recognized in several fields: in genomics for determination of gene function, in biotechnology 

for pest control, and in medicine as a therapeutic agent. The RNAi pathway has been implicated 

as a mechanism that evolved for defense against viruses or integration of mobile genetic 

elements; RNAi is also effective in regulating gene expression in virtually all eukaryotic 

organisms, including plants and insects (Fishilevich et al., 2016). The phenomenon of RNAi as a 

method for gene silencing has allowed unique advancements in the understanding of gene 

function in many organisms and thus accelerated the use of reverse genetics to new levels 

(Joga et al., 2016).  

The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-

dependent mode of action, which makes it unique in potency and selectivity compared with 

conventional agrochemicals (Zotti et al., 2018). The application of RNAi in agriculture, 

specifically in crop protection was first investigated by Baum et al. (2007), Mao et al. (2007), 

Price and Gatehouse (2008), and Zotti and Smagghe, (2015). They concluded that dsRNA-

mediated silencing of essential genes in insects can induce cessation of feeding and ultimately 

morbidity, however, need for the efficient uptake of dsRNA by feeding or topical application is 

essential for the development of cost-effective RNAi biopesticides. The main problem of pest 

control nowadays is resistance acquired to chemical products, therefore RNAi is an interesting 

method which can be applied in crop protection since it allows a wide range of target genes 

which can be silenced. The importance of novel techniques used in pest control is emphasized 

by the fact that the total market for agrochemicals increased by 2,6% in 2017, and reached 

$61,530 million (Zubok, 2019). The possibility of using RNAi as a method for pest control has 

created an interest in the market and it is expected that the number of registered RNAi-based 

plant protectants will increase in the future.  
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2.1. Molecular mechanisms of RNAi 

Three major RNAi pathways have been characterized so far: the microRNA (miRNA), piwiRNA 

(piRNA), and small interfering RNA (siRNA) pathways (Joga et al., 2016). The siRNA pathway is 

activated upon introduction of dsRNA in insects, therefore it is the key pathway for pest 

control. The principle of RNAi is sequence-specific degradation of mRNA induced by dsRNA 

homologous to the target sequence (Taxman, 2009). Several events take place during siRNA 

interference process in the cell. First, RNase III like adenosine triphosphate (ATP) dependent 

enzyme Dicer-2 processes dsRNA into smaller 21- to 25-nucleotide (nt) interfering sequences 

(siRNAs) with dinucleotide 3’ overhangs. Dicer encodes a multidomain protein containing an 

ATP-dependent RNA helicase, PAZ domain, two tandem RNase III domains, and a dsRNA-

binding domain (Bernstein et al., 2001). Insects have two Dicers and their activities have been 

postulated based on their counterparts in Drosophila (Camargo et al., 2018). In insects, Dicer-1 

exclusively recognizes miRNA and Dicer-2 recognizes dsRNA.  

The siRNA duplexes serve as guides for specific mRNA degradation. The ’guide strand’ or 

antisense strand of the siRNA is preferentially associated with RNA-induced silencing complex 

(RISC) while the ’passenger strand’ or sense strand which has the same nt sequence as target 

mRNA is degraded. The RISC complex binds with the homologous mRNA which is cleaved by the 

Argonaute 2 protein (Ago2). Ago2 protein contains two distinctive domains: a PAZ domain and 

a PIWI domain (Parker and Barford, 2006). The PAZ domain is responsible for RNA binding 

whereas the PIWI domain guides the cleavage of the target mRNA. Ago2 and Dicer-2 are two of 

the core protein families involved in dsRNA-mediated RNAi response.  

The complementary Watson-Crick base pairing of the antisense strand and target mRNA in RICS 

induces endonucleotic cleavage of the target mRNA by Ago2 protein. Ago 2 cleaves the target 

mRNA in the middle of the strand so that one fragment is missing polyA tail, and other 5’ 7- 

methylguanosine cap which makes them susceptible for degradation. Such degradation of 

mRNA obstructs translation; hence this process is often referred to as posttranscriptional gene 

silencing. The process is closely related to post-transcriptional gene regulation by microRNAs 

(miRNAs) where the end-result is inhibition of translation initiation, and shares many of the 
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same components (Price and Gatehouse, 2008). Therefore, RISC can mediate the degradation 

of mRNA or inhibit translation.  

The silencing ability of antisense RNA was originally observed in nematode Caenorhabditis 

elegans Maupas. It is used as a modal organism due to the known DNA sequence, short life 

span and simple management in the laboratory. The main advantages of using RNAi in 

nematodes are: (1) easy application (dsRNA delivery) by soaking or microinjection and (2) 

systemic gene suppression, (3) dsRNA amplification. Fire et al. (1998) noticed that silencing of 

genes in C. elegans isn’t limited only to cells at the site of injection, but can be transported to 

other cells which proved the systemic response of RNAi. The basis of this effect is thought to lie 

in the presence of an RNA-dependent RNA polymerase (RdRP) that can interact with the RISC 

complex and generate new dsRNA based on the partially degraded target template by using the 

hybridized siRNA strands as primers (Price and Gatehouse, 2008). New dsRNA is then cleaved 

by Dicer and new small interfering RNAs (siRNAs) are generated which can be transported to 

other cells. This provides the long-lasting interference effect and the spreading of the gene 

knockout effect in organism. Furthermore, the systemic properties of RNAi, that is, the spread 

of RNAi signaling/effects from cell to cell and from tissue to tissue, can lead to a heritable 

transfer of the RNAi effect (parental RNAi) (Zotti et al., 2018). In other words, RNAi can occur in 

embryos if the silencing signal is transmitted to embryos of the next generation. However, 

nematodes and insects do not share the same mechanism of systemic response since RdRP 

activity isn’t present in insects but it doesn’t exclude the possibility of systemic response in 

insect via different mechanism. 

The dsRNA can be taken up by insects using two different pathways (Figure 2.1.). Endocytosis 

and Sid-1-like transmembrane channel protein-mediated pathway are described for insect 

uptake, while Sid-1 and Sid-2 transmembrane channel proteins are needed for environmental 

dsRNA uptake in nematodes. Sid-1 and Sid-2 genes are essential for dsRNA uptake in 

nematodes and are not present in insects. SID-1 is a multi-span transmembrane protein 

essential for systemic RNAi (Huvenne and Smagghe, 2010). The other protein, SID-2m is mainly 

found in the intestine tissue of the worm and facilitates environmental RNAi (Winston et al., 

2007). A phylogenic analysis suggested that Sid-1 like genes in Tribolium may not be 
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orthologous to Sid-1, but rather to the C. elegans Tag-130 gene which is not associated in 

systemic RNAi in nematodes (Tomoyasu et al., 2008). Therefore, systemic RNAi system differs in 

nematodes and insects. The Sid-1-like channel proteins have been shown to be involved in 

dsRNA uptake in some insect species, such as the brown planthopper (BPH, Nilaparvata lugens 

Stal) (Xu et al., 2013), the Colorado potato beetle (CPB, Leptinotarsa decemlineata Say) 

(Cappelle et al., 2016), and the red flour beetle (Tribolium castaneum Herbst) (Tomoyasu et al., 

2008). Also, the presence of sid-1 homologs does not necessarily mean that dsRNA uptake is 

performed by the resulting Sid-1-like proteins (Cappelle et al., 2016). However, some insect 

genomes lack Sid-1-like genes completely and uptake of dsRNA depends on receptor-mediated 

endocytosis. For example, Drosophila melanogaster Meigen lacks Sid-1-like genes so the dsRNA 

transport is facilitated via endocytic pathway.  Cappelle et al. (2016) have confirmed that in 

coleopteran CPB both the Sid-1-like channel proteins as well as the receptor-mediated 

endocytosis are involved in dsRNA uptake. Notably, the full disclosure of dsRNA uptake 

mechanism in insect tissue is of key importance for better understanding of systemic RNAi in 

insects and the development of more potent delivery and application strategies of RNAi. 
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Figure 2.1. Posttranscriptional gene silencing – dsRNA is imported in cells via endocytosis in D. 

melanogaster or systemic RNA interference deficient-1 channel proteins (Sid-1 or Sid-2 

detected only in nematodes closely related to C. elegans). Afterwards, dsRNA is processed by 

Dicer into small interfering (siRNA) and incorporated in RISC complex while passenger strand is 

degraded by endonuclease. RISC complex binds to target mRNA and degrades it based on 

specific siRNA sequence. Systemic RNAi can take place by producing secondary dsRNAs which 

can then be exported from the cell and cause PTGS in other cells.  

Source: (Price and Gatehouse, 2008) 

 

The possibility of the absence of dsRNA amplification mechanism in some insects is the main 

problem in achieving the long-lasting effect of gene knockdown since effects of RNAi are visible 

only in cells exposed to dsRNA. Due to lack of Sid-1 and Sid-2 genes and their homologs in some 
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insects, the transport mechanism of dsRNA between cells in insects is unknown. This does not 

exclude the possibility of amplification of dsRNA in insects since the true mechanism is still 

unknown and may be based on the entirely different enzyme. Indeed, in some species, for 

example coleopterans, the RNAi effect is so strong and can last so long that it would be likely 

that such a system is present in these insects (Joga et al., 2016). However, the absence of 

amplification mechanism in some insects presents the problem when it comes to the 

application of RNAi since insects have to continuously be exposed to large amounts of dsRNA in 

order to have efficient gene knockout effect. Degradation of dsRNA in the gut would require 

continuous administration of high levels of dsRNA; production of sufficient dsRNA in transgenic 

plant and its delivery in a sufficiently undegraded state to the insect would provide another 

significant technical problem, if a role in defense against insect pests was required (Price and 

Gatehouse, 2008). However, results obtained in 2007 by Baum et al., and Mao et al., have 

shown that there is a possibility to resolve this problem by producing dsRNAs in plants (Baum et 

al., 2007; Mao et al., 2007). 

Baum et al. (2007) published breakthrough research done on Western corn rootworm (WCR; 

Diabrotica virgifera virgifera LeConte) in which they used transgenic plants producing hairpin 

dsRNA directed against a gene encoding V-type ATP-ase A against WCR and showed a 

significant reduction in WCR-caused root damage. There are different methods in which pests 

can intake dsRNA, but intake via transgenic plants producing specific dsRNA against pests is the 

most promising one for pest control on large scale.  

2.2. dsRNA delivery method and application for insect control 

Development of a robust dsRNA feeding methodology in insects that mimics the results 

obtainable with C. elegans (where efficient suppression of gene expression by orally delivered 

dsRNA is routine) is a prerequisite for utilization of RNAi for crop protection against insect pests 

(Price and Gatehouse, 2008). The best delivery dsRNA methods for insects are: (1) autonomous 

oral delivery (feeding) and (2) topical application of dsRNA on soil and leaves. Nevertheless, the 
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one that holds the promise for widespread usage is by feeding on transgenic plant material 

expressing specific dsRNA since it is the most potent method for pest control. 

Autonomous uptake of dsRNA in insects and digestion in the gut is the most applicable method 

of inducing interference in insects for pest control. The insect midgut plays a critical role in the 

regulation of important physiological functions such as digestion, metabolism, immune 

response, electrolyte homeostasis, osmotic pressure, and circulation (Hu et al., 2016) which 

makes it suitable target for RNAi application. The midgut columnar cells with microvilli and 

endocytosis apparati are responsible for absorbing nutrients and present the target for dsRNA 

uptake. The insect gut consists of foregut, midgut, and hindgut. The midgut region is the most 

appropriate site for dsRNA uptake since it contains exposed cells and is the main part of the 

exchange between the circulatory system and the gut. RNAi effects occurring in insects as a 

result of oral delivery of dsRNA are presumably mediated by the midgut and the Malpighian 

tubules to dsRNA in the gut contents (Price and Gatehouse, 2008). Uptake of dsRNA by the 

epithelial cells of the insect midgut is critical to the effectiveness of RNAi response (Joga et al., 

2016). Feeding physiology and persistence of dsRNA in gut is an important factor for its 

efficiency. The stability of dsRNA is influenced by gut conditions, especially Ph which varies 

among insects from acidic (Coleopteran larvae) to alkaline (Lepidoptera species), along the gut 

and with distance from the epithelium. Also, it is unclear to what degree the peritrophic matrix 

in the midgut of Coleoptera and Lepidoptera species can obstruct dsRNA transmission.   

Many researches have shown the great possibility of RNAi in a wide variety of insects applied 

through feeding (Araujo et al., 2006, Turner et al., 2006, Baum et al., 2007, Zhao et al., 2008, 

Zhou et al., 2008, Walshe et al., 2009). An appealing aspect of gene silencing for pest control is 

its potential for selectivity based entirely on nucleotide-sequence identity (Baum et al., 2007). 

The key to the success of this approach is: (1) identification of a suitable insect target and (2) 

dsRNA delivery of sufficient amounts of intact dsRNA for uptake by the insect (Price and 

Gatehouse, 2008) (Figure 2.2.). The breakthrough research done by Baum et al. (2007) showed 

that ingestion of dsRNA supplied in transgenic corn plants engineered to express WCR dsRNA 

triggers RNAi in WCR which results in reduced feeding damage, larval stunting and mortality. 

They tested possible target genes from WCR cDNA library and selected V-ATPase A which 
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showed significant larval mortality and rapid knockdown of endogenous mRNA within 24 hours 

of ingestion. Three other coleopteran species, Colorado potato beetle, Southern corn rootworm 

(SCR; Diabrotica undecimpunctata howardii Barber), and cotton boll weevil (Anthonomus 

grandis Boheman), were also tested for sensitivity to dsRNA targeting β-tubulin, V-ATPase A 

and V-ATPase E orthologues of WCR. The dsRNA showed significant larval mortality in CPB and 

SCR but larvae of cotton boll weevil showed no effects on mortality upon ingestion of dsRNA 

orthologues compared to control. This might suggest that not all coleopteran larvae are 

sensitive to orally delivered dsRNAs. Also, synthesis of gene-specific dsRNAs for CPB V-ATPase A 

and V-ATPase E showed higher activity than the orthologous WCR dsRNA since the V-ATPase A 

target sequence of CPB and WCR share 83% nucleotide-sequence identity. Transgenic corn 

plants were assembled by using putative V-ATPase A coding region from WCR into a corn 

transformation expression cassette designed to express dsRNA targeting 245 bp of the WCR 

gene. Transformed corn plants were infested with WCR eggs in the root zone and assessed for 

feeding damage after three weeks. The results showed obvious reductions in root damage 

compared to the control. RNA extracted from individual transgenic plants showed that dsRNA 

constructs were expressed as full-size transcript and small 21-bp siRNAs processed from the 

larger dsRNA, while plants which had the highest nodal injuries didn’t express dsRNA. This 

research demonstrated that autonomous feeding with plant material expressing specific dsRNA 

can cause high mortality in WCR and presents a feasible method for crop protection and has 

obvious commercial implications.  

Another study done by Mao et al. (2007) on cotton bollworm (Helicoverpa armigera Hubner) 

showed that when larvae are fed plant material expressing specific dsRNA, levels of cytochrome 

P450 gene (CYP6AE14) transcript in the midgut decreased and obstructed larval growth. P450 

monooxygenase CYPAE14 plays an important role in detoxification of the cotton metabolite, 

gossypol, in cotton bollworm. Production and storing of gossypol is important cotton defense 

mechanism against pests, but insect P450 monooxygenase serves as an adaptation mechanism 

to plant defense compounds and in developing resistance. Induction of CYP6AE14 expression by 

gossypol on the inner surface of cotton bollworm’s midgut showed a link between CYP6AE14 

expression and tolerance to gossypol, therefore CYP6AE14 was targeted for downregulation. 



11 
 

Feeding on transgenic plants expressing dsCYP6AE14, an inverted repeat driven from the 

CYP6AE14 coding sequence, resulted in a reduction of transcript levels in cotton bollworm 

which lead to reduced larval tolerance to gossypol and retarded larval growth. The study 

demonstrated that hairpin dsRNA expressed in plant tissue directed against CYP6AE14 provide 

sufficient amounts of dsRNA needed for RNAi in the insect midgut and that this method of 

delivery has great potential for pest control and immense agricultural importance.  

Both cotton bollworm and western corn rootworm are economically important pests. RNAi 

provides a unique mode of action for the control of insect pests that could complement the 

current strategy of expressing B. thuringiensis (Bt) insecticidal proteins in crops such as corn, 

cotton and soybeans (Baum et al., 2007). As a consequence of its highly specific mode of action 

compared with other pest control strategies such as conventional neurotoxic insecticides, RNAi 

technology comprises a suite of tools with a vast range of potential applications for generic 

studies and agriculture, including protection of beneficial insects against viruses and parasites 

(Hunter et al., 2010, Zotti and Smagghe, 2015), resistance management (Zhu et al., 2014), and 

pest control against insect species (Huvenne and Smagghe, 2010), plant pathogens (Fu et al., 

2005, Duan et al., 2012, Koch et al., 2013, Koch et al., 2016, Wang et al., 2016), mites (Wu et al., 

2014, Kwon et al., 2016, Li et al., 2017), ticks (de la Fuente et al., 2007), and nematodes 

(Youssef et al., 2013, Walawage et al., 2013) in a wide range of crops (Zotti et al., 2018). This 

technology enables the control of a single insect species while minimizing the negative impact 

on non-target organisms. RNAi-based products are expected to reach the market in the form of 

transformative products (plant-incorporated protectants (PIPs)) and non-transformative/non-

PIP products (sprayable, stem injection, root drenching, seed treatment or powder/granule 

products) (Joga et al., 2016, San Miguel and Scott, 2016, Andrade and Hunter, 2016, Andrade 

and Hunter, 2017).  
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Figure 2.2.: Oral delivery of dsRNA. Specific dsRNAs encoding for target genes expressed in 

transgenic plants are cleaved by Dicer-2 into siRNAs. The dsRNA and siRNA are expressed 

through plant tissues and orally delivered to pests feeding on plant material. In sufficient 

quantities, dsRNA and siRNA are delivered in gut and taken up by the gut cells. In case of 

Lepidoptera, a gut specific cytochrome monooxygenase (CYP6AE14), presumably involved in 

detoxification of gossypol, is knocked down by dsRNA products delivered by feeding method. In 

case of Coleoptera, midgut V-ATPase A is knocked down by dsRNA delivered by feeding on 

transgenic plant material which results in larval mortality and stunting presumably through 

disruption of gut membrane potential.  
Source: (Price and Gatehouse, 2008) 
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There is also a possibility of topical application of dsRNA on leaves or soil since dsRNA can be 

translocated through the plant vascular system. This is especially important for sap-feeding 

insects and root-feeding insects since plant roots can take up dsRNA and enable delivery 

through phloem and xylem. Focus on the development of topically applied RNAi-based 

approaches to manage insect pest and pathogens may provide environmentally sound products 

for use across all agriculture production systems (Andrade and Hunter, 2017). Further 

development of such products will be required in order to determine the stability of topically 

applied dsRNA and efficiency of dsRNA taken up by the insects due to susceptibility to sunlight 

degradation (Li et al., 2015), degradation by environmental microbes (Dubelman et al., 2014) 

and in the cells by natural dsRNA processing mechanism (Palli, 2014). The applicability of 

sprayable dsRNA relies on the development of cost-effective methods for the mass production 

and formulation of the dsRNA (Zotti et al., 2018). Mitter et al. (2017) provided evidence that 

using designer, non-toxic, degradable, layered double hydroxide (LDH) clay nanosheets can 

substantially increase naked dsRNA stability sprayed on plants. They concluded that once 

loaded on LDH (BioClay nanocarrier system), the dsRNA does not wash off, shows sustained 

release and can be detected on sprayed leaves even 30 days after application. This proves the 

versatility of RNAi technology application and reinforces the high potential of RNAi products for 

their utilization in crop protection.  

The US EPA recently registered four products containing a new and innovative RNAi-based PIP 

called ’SmartStax PRO’ that will help US farmer to control CRW (Zotti et al., 2018). Despite the 

growing market interest in RNAi-based biopesticides, there are still unresolved questions on 

environmental safety and lack of field experimentation. Therefore, as all new technologies, 

RNAi biopesticides and transgenic plants have to be more carefully examined for their potential 

hazards.  

2.3. RNAi risk assessment 

RNAi, as a novel technology, opened up new approaches towards modern pest management. 

There are similarities and differences in the risk associated with insecticidal RNAi relative to 
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those posed by chemical and microbial pesticides and Bt crops, which have pesticidal effects 

derived from the bacteria Bacillus thuringiensis (Heinemann et al., 2013). Although most 

regulatory agencies for biotech products such as US EPA and the European Food Safety 

Authority (EFSA) have extensive experience in the ecological risk assessment of newly 

introduced PIPs, based on several years of Bt-based crop assessments (US EPA, 2016, EFSA, 

2014), the hazards or ecological risks of dsRNA may not be assessed using the same framework 

because of the unique mode of action of dsRNA (Zotti et al., 2018). Lundgren and Duan (2013) 

argue that some of the potential hazards posed by RNAi-based pesticides and transgenic crops 

to non-target organisms include off-target gene silencing, silencing the target gene in 

unintended organisms, immune simulation, and saturation of the RNAi machinery. 

US-Environmental Protection Agency stated in the RNAi risk assessment (2013) that the 

growing potential of RNAi based biopesticides has lead Scientific Advisory Panel (SAP) to 

consider aspects of risk assessment to determine whether and RNAi based PIP can meet the 

environmental safety standard. The US EPA’s consideration for the environmental fate of 

dsRNA and non-target effects are the same for all RNAi biopesticides (PIP, foliar spray, seed 

treatment, granule/powder). Two main uncertainties related to RNAi-biopesticides are 

determination of effects of non-target exposure and environmental exposure. Non-target 

organisms include: birds, mammals, freshwater and marine fish, aquatic invertebrates, non-

target insects, honey bees, non-target plants and soil invertebrates.  The degree of non-target 

exposure depends on the distribution and fate of the dsRNA PIP within the environment, as 

well as the potential routes of exposure, exposure duration, and potential for uptake (US EPA, 

2013). Significant considerations of environmental risk assessment are potential paths of dsRNA 

distribution in the environment. Factors that affect the distribution of dsRNA in the 

environment and the potential for exposure to non-target organisms include physical 

movement of the PIP crop plant tissue, persistence and physical movement of dsRNA released 

from the plant, either while plant is living or following the breakdown of plant tissue (US EPA, 

2013). It is also possible that dsRNA could be present in root exudates, guttation droplets, and 

nectar which emphasizes the possibility of on-field non-target exposure. The US EPA (2013) also 

considers off-site movement of plant pollen expressing dsRNA relation to non-target exposure 
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which depends on the characteristics of the pollen (morphology and weight) and the 

mechanism relied upon for pollination (i.e. wind, pollinators). Another point is release of dsRNA 

in environment upon transgenic plant tissue degradation. Degradation of the plant tissue will 

affect the potential for exposure, since RNA is degraded within the plant during senescence 

(Pietramellara et al., 2009). Nevertheless, some dsRNA may not be degraded by the time plant 

material reaches the ground which means that it could easily end up in the soil where it may 

persist for a certain time or be transported to other environments. Studies show that DNA can 

persist in soil for a few days or several years by binding to humic substances or minerals, or it 

may be degraded by microbe and nucleases (Levy-Booth et al., 2007, Pietramellara et al., 2009). 

The information on the potential of dsRNA PIPs vertical and lateral movement in soil with water 

and the effects of binding to soil particles have to be more closely examined. Another possibility 

of non-target exposure is secondary exposure where organisms which have ingested dsRNA are 

consumed by non-target organisms. Garbian et al. (2012) showed that dsRNA could be 

transferred from bees to Varroa mites showing that secondary exposure to dsRNA is possible.  

In order to assess risk, the US EPA (2013) proposes measuring the exposure levels which are 

assumed to be equal to the highest amount expressed in various plant tissues. The 

environmental risks for chemical and microbial pesticides, as well as Bt crops, are usually 

assessed using a tiered approach (Zotti et al., 2018) which is based on maximum-hazard dose 

for predicting toxic events and off-target events. The US EPA (2013) also states that optimum 

concentrations of dsRNA for adequate RNAi effect should be used which then leads to the 

possibility of diminishing environmental exposure levels. Finally, the ecological risk assessment 

should rely on environmental fate and non-target toxicity and consider the unintended effects 

of dsRNA PIPs due to its unique mode of action.  

There should be a balance between benefits for crop protection and environmental risks, and 

therefore potential hazards posed by RNAi-based pesticides and RNAi-based engineered crops 

should be carefully assessed using methods that take into consideration the fact that RNAi has 

a unique mode of action that can also silence unintended genes (Zotti et al., 2018). 
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3. Western corn rootworm 

Western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) (Figure 3.1.) 

was first discovered in Kansas, USA and described by LeConte in 1867. Shortly after its 

discovery, Gillette (1912) recognized it as maize (Zea mays L.) pest in sweetcorn in the central 

USA. From 1909 to 1948 the insect spread eastward at an average rate of about 19 km per year 

(Metcalf, 1986). From 1950s onwards, the species invaded new areas at a rate of 64 to 80 km 

per year, and the practice of continuous maize planting without crop rotation allowed D. v. 

virgifera to become a major pest (Youngman et al., 1999) (Figure 3.2.). Fifty years after, D. v. 

virgifera was detected in Europe in Serbia and spread to other Central and Southern European 

countries within 10 years. Total area infested in Europe by WCR reached approximately 311 000 

km2 by the end of the 2003 maize growing season, with about 70 000 km2 of land area with 

economic adult activity and approximately 97 km2 of larval damage (Kiss et al., 2005). 

Nowadays, WCR is the most important economic pest of continuous maize cultivation in US and 

Europe, difficult to manage and to eradicate. 

 

Figure 3.1.: Adult western corn rootworm, Diabrotica virgifera virgifera LeConte (Photo: R. 

Schmidt) 

Source (Cullen et al., 2013) 
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Figure 3.2.: Reconstruction of WCR expansion in US from 1867 to 2005 based on data reports in 

the literature (Tate and Bare, 1946, Foott and Timmins, 1977, Metcalf, 1983, Smith, 1983, 

Krysan, 1986, Youngman and Day, 1993, McPherson et al., 1996., Sutter, 1999, Meloche and 

Hermans, 2004, Meloche et al., 2005). Distribution boundaries are approximate and triangles 

mark reports of WCR before their distribution was established. 

Source (Gray et al., 2009) 

The significance of this pest is illustrated by the cost of the damage caused by WCR corn 

infestation in maize. Metcalf (1986) reported the cost greater than 1 billion $/year due to yield 

losses and control costs and Dun et al. (2010) suggested that a 17.9% of yield loss can be 

expected for each node of roots injured by WCR larvae and that current management costs 

associated with WCR could be significantly greater than 1 billion $/year. Recent development of 

new WCR variants, resistant to various management practices such as chemical insecticides, 

crop rotation, and Bt maize, resulted in maize yield decrease and increase of control costs. 

Therefore, the magnitude of WCR infestation in US became substantial, especially in major 

maize growing areas (Figure 3.3.). The main areas of economic damage in Europe are 

southeastern countries like Croatia, Serbia, Hungary, Slovakia, and Italy (Hummel et al., 2008) 

(Figure 3.4.). 
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Figure 3.3.: Area of maize acres infested by the WCR in North America in 2012 
Source: (https://extension.entm.purdue.edu/wcr/) 

 

 

Figure 3.4.: Area of maize acres infested by the WCR in Europe in 2012 
Source: (https://extension.entm.purdue.edu/wcr/) 

https://extension.entm.purdue.edu/wcr/
https://extension.entm.purdue.edu/wcr/
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3.1. Pest characteristics and maize damage 

Knowing pest biology and ecology is essential for its successful management. The amount of 

injury caused by an insect pest to a crop plant depends on the feeding habit of the pest species, 

the size of its population, and the capacity of the plant to withstand the type and amount of 

injury that results from the species feeding habit and size of population (Kogan, 1994). The 

population management of WCR depends on a multitude of connected factors such as 

emergence, phenology, oviposition, adult movement, and dispersal. 

The WCR pests have one generation per year (univoltine), overwinter in the egg stage and are 

present in maize fields from July until the first frost. WCR beetles feed on the leaves, silk, pollen 

and young kernels of maize, although pollen is the preferred food (Kiss et al., 2005). After the 

silking period WCR are able to feed on a variety of alternate host plants (Clark and Hibbard, 

2004, Musická et al., 2004) and they can survive to adulthood on several grass species, 

including foxtail, wheatgrasses, Johnsongrass, rye, rice, millet, fescue, ryegrass (Branson and 

Ortman, 1970), alfalfa (Ball, 1957), soybean (Shaw et al., 1978), red clover, velvetleaf, giant 

rageweed, and Jerusalem artichoke (Levine et al., 2002), although the fitness of WCR females is 

reduced when feeding on plants other than maize. 

The ovipositional habit of WCR females is critical for larval survival, as larvae can develop on the 

roots of maize, but high mortality occurs on the roots of grassy-type weeds (Branson and 

Ortman, 1970). Soil moisture is an important factor for oviposition, and if the soil is sufficiently 

moist during August females will lay a larger number of eggs (Weiss et al., 1983, Spike and 

Tollefson, 1988, Toepfer et al., 2007, Meinke et al., 2009). Diapausing eggs are laid in the soil in 

late autumn and overwinter in the soil until late May and early June when they hatch. Because 

larvae are essentially monophagous and immobile, ovipositional activity of adults in the late 

summer and fall plays an important role in linking the insects temporally and spatially with the 

host plant (Naranjo and Sawyer, 1988). After larvae hatch, they are established on their host 

plants’ roots. If egg hatch timing doesn’t overlap with host plant root development, larval 

establishment and survival are reduced. Therefore, delayed planting results in reduced root 

damage and adult emergence, and peak emergence time (Musick et al., 1980). WCR larvae feed 
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on maize roots which causes the reduction of water and nutrient availability to developing 

plants, disruption of root system function, reduction of grain yield (Spencer et al., 2005), and 

facilitate infection by root and stalk fungi resulting in further damage (Levine et al., 2002) such 

as lodging (Figure 3.5.). High temperatures in summer can increase larval feeding damage since 

larvae predominantly feed on maize roots due to lack of soil water. Ivezić et al. (2009) reported 

high maize root injury in 2003 due to warm summer and drought stress caused by a low 

amount of precipitation during the vegetation period. Finally, adverse environmental conditions 

(i.e. drought) in conjunction with rootworm feeding injury can greatly diminish plant health and 

subsequently productivity (Boetel et al., 2003) (Figure 3.6.). 

WCR adults are mainly pollen feeders that also use above-ground plant organs of maize 

(Chiang, 1973; Ludwig and Hill, 1975). Corn pollen and silk were shown to be the best for egg 

production in female D. virgifera virgifera (Elliot et al., 1990). Increased number of WCR adults 

in maize fields may hamper maize pollination due to silk feeding and cause reduced ear filling 

and seed shape deformation which results in economic damage, although lower than that 

caused by WCR larvae.  

 

Figure 3.5.: WCR damage to maize root; the resistant GM line is symptom-free (left) and 

susceptible control is severely injured (right) 

Source: (Ball et al., 2008) 
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Figure 3.6.: WCR injury to a commercial maize field in Illinois, 1995. Maize injury resulted from 

larvae feeding on the plants’ root system with the added stress of low precipitation. 

Source: (Levine et al., 2002) 

3.2. Chemical measures 

Largescale applications of soil insecticides were first made for D. v. virgifera control in 1949 and 

more than 700 000 ha were being treated with insecticides by 1954 (Ball and Weekman, 1962). 

Chemical treatments included BHC, aldrin, chlordane, heptachlor, and cyclodiene. First 

outbreak insecticide-resistant strains occurred shortly after the start of extensive use of soil 

insecticides and resistant strains rapidly spread over the US Corn Belt. Metcalf (1983) indicated 

that insecticide resistance results from an intensive selection of a large insect population having 

a substantial gene pool that incorporates, often at a very low frequency, mutant alleles 

conferring fitness for survival under the modified environment contaminated by the insecticide. 

He concluded that WCR cross-resistance to the soil insecticides aldrin, heptachlor and 

chlordane sharply decreased the benefit/cost ratio of the soil insecticide treatments in corn. 

Also, he noted that the rise of widespread cyclodiene resistant WCR occurred simultaneously 

with the acceleration in the rate of WCR expansion, probably due to increased fitness of 

resistant beetles and behavioral changes associated with the resistance gene. 
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The failure of chemical measures is emphasized by many researches showing the inefficiency of 

chemical insecticides application on WCR population. Gray et al. (1992) conducted a 3-year 

evaluation of WCR emergence as affected by insecticide and tillage system and suggested that 

planting-time insecticide applications, although intended to protect maize roots, do not result 

in actual rootworm population management. Sutter and Gustin (1989) established artificial 

infestations of WCR and observed more adults emerging from insecticide-treated soil than from 

untreated control plots. Woodson et al. (1999) observed avoidance behavior in the third stage 

WCR in response to the organophosphate insecticides terbufos, chlorethoxyfos, and fonofos. 

This results in negative chemotaxis and movement to untreated plots avoiding toxic chemicals. 

Furthermore, certain chemicals can act as repellants to WCR causing movement of adults to 

neighboring fields where females can lay eggs. Such example was recorded by Levine et al. 

(2002) who concluded that application of permethrin to seed-production cornfields may have 

led to WCR oviposition in the nearest untreated fields, specifically adjacent seed-production 

soybean fields. Larvae that emerge from neighboring fields could then cause injury to rotated 

maize crop. 

The greatest problem of chemical insecticides is routine application despite the actual WCR 

population present in the cornfield or the economic injury level, and low efficacy of chemical 

treatments on WCR pest management. Rapid development of resistance to pesticides in some 

populations of corn rootworms, human safety and ecological concerns have motivated the 

development and adoption of environmentally rational management practices (Kiss et al., 

2005). 

3.3. Cultural measures 

Annual rotation of maize and soybean has successfully managed WCR pest population in the US 

Corn Belt and Canada from the introduction of practice until 1990s. A corn and soybean 

rotation disrupts the rootworm life cycle because eggs are not normally laid outside of 

cornfields and larvae cannot survive on soybean roots (Levine et al., 2002). Behavioral change 

in WCR population caused the failure of crop rotation as cultural measure of maize protection. 
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In 1995, crop rotation failed as a pest management tactic in a large number of first-year 

commercial cornfields across east Illinois and northwestern Indiana (Levine and Gray, 1996, 

Edwards, 1996, Gray et al., 1998a, 1998b). Delayed planting, a later than usual egg hatch (mid-

June) and prolonged hot and dry conditions in July worsened the impact of rootworm larval 

feeding (Levine and Gray, 1996, Gray et al., 1998). Injury to first-year corn was caused by 

ovipositional changes of WCR females. The main obstacle for successful corn protection using 

cultural measures is reduced preference of WCR females to lay eggs on corn fields due to 

reproductive advantage. 

Although crop rotation proved itself as unsuccessful measure against WCR in some areas, it is 

still cost-effective and environmentally friendly tool for many countries in Europe. It is used as 

integrated pest management (IPM) control option for both management and eradication. In 

general, its application has been highly recommended to control established alien invasive pest 

populations (Wittenberg and Cock, 2001). European crop rotation systems are more diverse 

than the corn/soybean rotation in the US Corn Belt and incorporate more monocot crops 

(Moeser and Hibbard, 2005). Crop rotation as a method of control is still effective in Europe 

because farmers use more diverse array of cropping systems (Kiss et al, 2005), rotate more 

often with a greater variety of crops, and frequently utilize relatively smaller fields compared 

with farmers in the USA who operate on much larger scale (Gray et al., 2009). On the other 

hand, monocot weed flora in Europe may present a problem in WCR management if WCR 

adapts to changing environments and alternative host plants. Moeser and Hibbard (2005) argue 

that monocot crops grown in close spatial range to maize fields are capable of acting as a 

reservoir, even in the absence of maize, and that WCR females could use monocot weeds or 

crops as a place for oviposition. This could provide new areas of infestation and expansion of 

WCR’s ecological niche due to the high adaptability of WCR regarding host plants. 

Igrc Barčić et al. (2007) conducted a study on WCR adult movement and egg-laying in fields 

bordering corn in Croatia. WCR egg-laying reached approximately 20 m into field neighboring 

maize fields and significant root damage caused by WCR larvae in first-year corn following 

soybean and wheat can happen up to a distance of 20 m into those fields due to edge effect. 
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Their findings indicated possible WCR larval damage in rotated fields in Croatia, since most of 

them are approximately 50 m wide, without WCR being the variant form resistant to crop 

rotation. The main goal for successful cultural measures against WCR pest is to assess adult 

population level in the donor field at which economic damage in neighboring fields could occur 

or to assess the number of WCR adults in pre-maize fields.  

The oviposition by WCR females in soybean and other neighboring fields is an immense threat 

to the efficacy of cultural measures in WCR management. Due to the failure of chemical and 

cultural measures in corn protection against WCR, Bt maize was commercialized in the US as a 

solution for management and eradication of WCR.   

3.4. Biotechnical control 

Genetically engineered Bt crops produce toxins (Bt δ-endotoxin) derived from the bacterium 

Bacillus thuringiensis Berliner (Bt) which kill pests and reduce the use of chemical insecticides. 

Transgenic Bt maize hybrids that produce insecticidal proteins from the bacterium Bacillus 

thuringiensis (Bt) have become the standard management tactic against insects across the US 

Corn Belt (Cullen et al., 2013). In 2018, 80% of total 89 129 000 acres of maize planted in the US 

contained at least one Bt trait – stacked gene (USDA-NASS, 2012) (Figure 3.7.). Stacked maize 

hybrids contain traits targeting WCR and one or more additional traits targeting stalk-boring 

insect pests and herbicide tolerance (HT). Bt maize provides effective control of several key 

insect pests, with additional benefits of reduced reliance on conventional insecticides and, in 

some cases, regional suppression of pests (Romeis et al., 2008, Hutchison et al., 2010) as well as 

reduced harm to non-target organisms and increased profit to farmers (Cattanero et al., 2006, 

Marvier et al., 2007, Carpenter, 2010, Hutchison et al., 2010). It was first commercialized in 

1996 in the US and in 1998 in the EU, although Cry3Bb1 maize containing toxin for 

management of WCR wasn’t registered until 2003. Three additional Bt proteins registered in 

following years: Cry34/35Ab1 in 2005 – a binary toxin, mCry3A in 2006, and eCry3.1Ab 

(commercialized in maize containing mCry3A, available as “pyramid” trait) in 2012. 
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Figure 3.7.: Increase of adoption rate for stacked corn varieties which have Bt and HT traits. 

Source: (USDA-ERS, 2019) 

Rapid increase of stacked Bt maize acres in the US is caused by the emergence of WCR varieties 

resistant to crop rotation while in the EU, due to the effectiveness of crop rotation against 

WCR, Bt maize is grown continuously at a large scale only in Spain. Although intended to be a 

long-lasting solution for WCR management, first Bt maize resistant rootworms appeared in 

2009. Widespread planting of Bt corn imposes selection on target insects to develop resistance 

(Cullen et al., 2013).  

Gassmann et al. (2014) reported that during 2011, injury to Bt maize in the field expanded to 

include mCry3A corn in addition to Cry3Bb1 corn and laboratory analysis from these fields 

found resistance to CryBb1 and mCry3A and cross-resistance between these toxins. They noted 

the increase of resistant WCR between 2009 and 2011 in Iowa with severe root injury and the 

ability of WCR to survive on Cry3Bb1 maize. As they concluded, the resistant WCR appeared as 

a result of rapid development of resistance to Bt crops that are not high dose which highlights 

the potential of insects to develop resistance when Bt crops do not achieve a high dose of Bt 

toxin. For example, the refuge and high-dose of Bt toxin have worked in tandem to prevent 

resistance development in the European corn borer population (Tabashnik, 1994, Gould, 1998, 
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Huang et al., 2011). Respectively, planting Bt crops which are not high-dose allows some WCR 

survivors in every field. When heterozygotes (individuals with a mixture of alleles for resistance 

and susceptibility) can survive on a Bt crop, the frequency of Bt resistance alleles within a 

population can increase rapidly (Cullen et al., 2013).  

Current approaches to resistance management for Bt crops, enacted by the US EPA, promote 

the use of refuges and planting of pyramided Bt crops to delay the evolution of resistance 

(Tabashnik and Gould, 2012). Ideally, pyramids contain two or more efficacious Bt toxins that 

kill the same pest insect but have different modes of action, making it difficult for a pest 

population to develop resistance to both toxins (Carriere et al., 2015, Roush, 1998). 

Additionally, the US EPA (2017a) recommended IPM approach to delay further resistance which 

includes crop rotation, use of maize rootworm soil insecticides at-planting with a non Bt-hybrid, 

using Bt hybrid with a different corn rootworm Cry protein than one that may have performed 

poorly in the past, and long-term IPM implementation that uses multiple tactics for WCR 

suppression. Also, recognizing the threat of resistance, the US EPA requires registrants (seed 

companies) to include an insect resistance management (IRM) plan when applying to register a 

Bt trait (Cullen et al., 2013) in order to detain field-evolved resistance of target insects.  

In the last two decades, Bt maize has been the main management strategy for WCR control. 

Emerging field resistance to mCry3A and Cry3Bb1 decreased the efficiency of Bt maize against 

WCR.  To improve future prospects for managing resistance to Bt crops, resistance monitoring 

data should be analyzed retrospectively in conjunction with data on the spatial and temporal 

distribution of Bt corn and refuges (Carriére et al., 2012). Resistance monitoring is essential for 

the detection of the occurrence of resistant insects in the field while IPM management 

strategies can contribute to the long-term effectiveness of Bt maize against WCR. 
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4. RNAi technology in WCR management 

Western corn rootworm management is a challenging task since WCR have shown significant 

adaptability and resistance to various management strategies. In instances where resistance 

has been documented, it has always been associated with uniform adoption of a given 

technology over large geographic areas (Fishilevich et al., 2016). The most recent technology, 

genetically engineered corn expressing Bt insecticidal proteins, failed to circumvent WCR’s 

ability to adapt to novel management technologies. In addition, using only one WCR 

management technique isn’t sufficient for adequate control and combining multiple techniques 

and modes of action is essential for efficient control of this resilient pest. Therefore, there is a 

need for the development of a more robust control option with a special emphasis on 

resistance management, which can be used along with existing techniques, is environmentally 

safe and efficient.  

RNAi is an effective novel biotechnological tool which can be used for WCR control. Baum et al. 

(2007) first reported the potential of in planta RNAi as efficient WCR management tool. More 

recent reports (Rangasamy and Siegfried 2011, Bolognesi et al. 2012, Ramaseshadri et al. 2013, 

Khajuria et al. 2015, Hu et al. 2016, Niu et al. 2017) have confirmed a great capability of oral 

exposure of WCR larvae and adults to dsRNA in corn protection and WCR management. Due to 

its efficiency, reliability and pest insect specificity it is expected to reach the market as novel PIP 

pest control in combination with Bt technology in the near future. For the moment, there are 

four RNAi PIP product approved by the US EPA called SMARTSTAX PRO which combine Bt traits 

and DvSnf7 dsRNA.   

4.1. Molecular mechanisms of RNAi in WCR  

Remarkably efficient RNAi response in both WCR larvae and adults upon ingestion of dsRNA 

caused increased interest in the feasibility of RNAi-based technology for WCR management. In 

order to assess the potential of RNAi as WCR management technique, it is important to 

understand the RNAi pathway on a molecular level.  
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The RNAi pathway in WCR starts with the initial uptake of dsRNA in the midgut cells and 

continues with systemic spread of RNAi silencing signal. Although WCR exhibits strong systemic 

response to RNAi, transitive RNAi mechanism which is present in nematodes (Ketting et al., 

2001, Alder et al., 2003, Sijen et al, 2007), plants (Vaistij et al., 2002, Chen et al., 2010) and 

fungi (Fernandez et al., 2012) and responsible for secondary siRNA amplification and 

magnification of RNAi response isn’t present in WCR. In organisms which have amplification 

mechanisms, secondary siRNA is produced by RdRP. The resulting secondary siRNAs trigger a 

secondary gene silencing that is termed transitive RNAi (Ketting et al., 2001). Fishilevich et al. 

(2016) suggested three possible explanations of strong systemic RNAi response in WCR: (1) the 

potent RNAi response in WCR might not involve transitive RNAi, (2) transitive RNAi in WCR is 

dependent on an enzyme other than RdRP, and (3) the secondary siRNAs generated by WCR are 

modified in such way that they are not detectable by the standard sequencing methods. All in 

all, the presence of strong systemic response to orally delivered dsRNA is only adding to the 

efficiency in protecting maize from WCR damage.   

Another interesting remark is the susceptibility of WCR adults to dsRNA which can produce 

transgenerational control of WCR. This effect, also called parental RNAi (pRNAi) has been 

observed in multiple insects (Bucher et al., 2002, Paim et al., 2013). Therefore, pRNAi in WCR 

may provide an additional population management strategy for this important insect pest 

(Fishilevich et al., 2016). Khajuria et al. (2015) investigated pRNAi of genes involved in 

embryonic development of WCR. They showed that targeting genes essential for progeny of 

adult WCR could prevent crop injury by impacting the population of larval progeny of exposed 

adults. Aside from the great potential of pRNAi to target progeny of WCR adults and achieve 

maize protection in the subsequent generation, pRNAi is can also be used to reduce resistance 

by preventing oviposition or loss of egg viability and manage WCR population by preventing 

resistance alleles to be passed on to subsequent generation.  

Resistance management is of the essence for RNAi-based insecticides. Past experience showed 

great adaptability and resistance of WCR to biotechnological control techniques which rapidly 

diminished the efficiency and increased the economic damage caused by WCR corn infestation. 

Transgenic crops that produce substances that provide protection from insect feeding are 
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vulnerable to the evolution of resistance in the target insect pest population, resulting in a 

reduction in the durability of the insect resistance substance(s) and the associated loss of 

benefits (Fishilevich et al., 2016). Therefore, changes in RNAi pathway genes and the 

subsequent effect on resistance development to RNAi in WCR has been examined (Vélez et al., 

2016, Camargo et al., 2018, Davis-Vogel et al., 2018). Although there is no reported WCR 

resistance to RNAi technology, various adaptations to RNAi pathway may occur and it is 

important to understand the potential pathways in which WCR can develop resistance to RNAi 

technology. Preliminary evidence suggests that western corn rootworm could develop broad 

resistance to all insecticidal RNAs through changes in RNAi pathway genes; however, the 

likelihood of field-evolved resistance occurring through this mechanism remains unclear (Davis-

Vogel et al., 2018). Recent evidences suggest evolution of RNAi pathway gene functionality in 

insects is a slow and complex process (Meister, 2013, Jun Tong et al., 2015, Dowling et al., 

2017). While certain regions of the sequences themselves may show rapid change, conserved 

regions that preserve protein function – and indeed the miRNA pathway genes themselves 

which participate in certain aspects of siRNA-mediated RNAi – show little or no evidence of 

positive selective pressure (Obbard et al., 2006). Therefore, changes in expression of these 

genes were considered to be a more viable route to resistance than outright loss or functional 

mutation (Davis-Vogel et al., 2018). Some studies (Velez et al., 2016, Wu et al., 2017) suggested 

that changes in key RNAi processing components could also be a route for WCR resistance 

development. Camargo et al. (2018) reported that knockdown of RNAi pathway genes 

Argonaute 2, Dicer-1, and Dicer-2 showed no fitness costs in WCR larvae which suggests that 

they do not have essential function in WCR larvae, but knockdown of Agronaute 1 reduced 

larval survivorship and delayed development which confirmed the important role of AGO 1 in 

the regulation of processes such as embryonic development. They concluded that the potential 

for resistance may depend on whether RNAi pathway genes have essential function such that 

the loss of their function will reflect in fitness cost of WCR and if not, the resistance could occur 

through downregulation or loss-of-function of RNAi pathway genes which do not have fitness 

costs.  
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Since RNAi-technology is most likely to appear along with Bt traits in transgenic plants, the 

potential interactions between Bt and dsRNA have to be evaluated. Theoretically, stacking Bt 

and RNAi traits in maize could delay resistance development of WCR. If the insect-protected GE 

crop simultaneously produces two or more insecticidal substances with different modes of 

action such that cross-resistance is less likely to occur, insects that carry resistance alleles to 

one of the substances will continue to be controlled by the other substance(s) and fail to pass 

resistance alleles on to the next generation (Fishilevich et al., 2016). However, the competition 

between these two traits isn’t thoroughly examined. Zukoff and Zukoff (2017) evaluated the 

host recognition response of WCR larvae to RNAi and Bt vector stack in maize. They concluded 

that all examined corn lines (Bt, RNAi, stacked RNAi and Bt, and isoline of these) were 

recognized as suitable hosts for WCR and that WCR could be attracted to hybrids, fed, and 

exposed to the Bt toxins or RNA in roots the same as the isoline plants, therefore equal larval 

pressure can be expected to all maize lines which is positive for resistance management. 

Additionally, stacking two or more RNAi traits in maize has to be researched since there is a 

possibility of competition between dsRNAs, along with competition with plant-derived siRNAs. 

Miyata et al. (2014) reported that mixture of dsRNA can result in competition between dsRNAs 

for RNAi machinery and cellular uptake/transport components and that competitions usually 

depends on the dose and length of dsRNA. RNAi treatment with more dsRNA molecules and 

longer dsRNA molecules wins out other RNAi treatment.  

Ivashuta et al. (2015) investigated RNA movement between host plants and WCR and 

demonstrated that only long dsRNAs were selectively accumulated in insects respective to 

environmental RNAi (eRNAi) while abundant plant small RNAs and smaller RNA fragments were 

not taken up or were unstable in the gut lumen environment. Furthermore, 12% of siRNAs 

found in the WCR third instar larval body originated from the maize corn roots but had little or 

no effect on WCR transcriptome. This indicates that competition between plant-derived siRNAs 

and transgenically produced dsRNA is unlikely due to high identity on-target effects of 

transgenes producing dsRNAs and insignificant gene regulation by plant-derived siRNAs at the 

level of transcript accumulation. 
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4.2. Recent advances 

In order for RNAi to be successfully adapted into plant protection, various factors have to be 

considered: (1) screening potential target sequences, (2) choosing efficient dsRNAs which 

produce fast response in target pest, (3) having stable expression and accumulation of dsRNA in 

plant tissue, (4) reducing development of resistance, and (5) environmental safety. The first 

step of efficient RNAi-based pesticide development is screening and choosing efficient dsRNAs 

against WCR which result in mortality, larval growth inhibition, reduction of WCR’s fertility, 

and/or inhibition of embryonic development. Important aspects of RNAi bioassays are (1) 

length of dsRNA fragments, (2) dsRNA dose – LC50, GI50, and (3) sensitivity of target genes – LT50. 

Measurements other than the overall lethality, such as LC50 (concentration that leads to 50% 

lethality), LT50 (time to reach 50% mortality in the tested population) or GI50 (concentration that 

leads to 50% growth inhibition) can be useful to identify potential target sequences and 

discriminate among multiple efficacious dsRNA targets (Fishilevich et al., 2016). Rangasamy and 

Siegfried (2011) concluded that there is an upper limit of exposure to dsRNA that produces a 

response, and that lower exposure has to be determined to establish reliable LC50.  

Bolognesi et al. (2012) noted that dsRNAs greater or equal to approximately 60 base-pairs (bp) 

are required for biological activity in artificial diet bioassays. Moreover, they observed that 240 

bp dsRNAs containing a single 21 bp match to the target sequence are efficacious while 21 bp 

siRNAs matching the sequence were not which suggests that the dsRNA length plays an 

essential role in the effectiveness of the RNAi response in WCR larvae. They hypothesized that 

the lack of activity of 21 bp siRNAs could be due to the fact that the processing of long dsRNAs 

with 100% match with the target mRNA results in multiple target-specific siRNAs which 

provides a greater number of siRNAs available to target mRNA and cause mortality. Recent 

studies have shown that various genes can be targeted in WCR for efficient RNAi-mediated 

knockdown which can be successfully used in plant protection (table 4).  
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Table 4: List of WCR genes for RNA interference control: 

TARGET GENE GENE FUNCTION RESULT OF GENE 

KNOCKDOWN 

SOURCE 

Vacuolar ATPase  

(V-ATPase) 

Conserved ATP-dependent proton pumps present in 

intracellular organelles such as endosomes, lysosomes 

and secretory vesicles and in plasma membrane of 

animal cells where they control cytoplasmic pH or 

energization of membrane 

Loss of cell membrane 

integrity, cell-cell junctions, 

larval stunting, larval 

mortality, adult mortality 

Baum et al. (2007) 

Rangasamy and Siegfried (2011) 

Koči et al. (2014) 

DvSnf7 Part of the ESCRT (Endosomal Sorting Complex 

Required for Transport) pathway which has crucial 

role in cellular housekeeping by internalization, 

transport, sorting and lysosomal degradation of 

transmembrane proteins 

Malfunctioning of cellular 

processes in midgut and fat 

body tissues, larval stunting, 

larval mortality 

Bolognesi et al. (2012) 

Ramaseshadri et al. (2013) 

 

hunchback (hb) 

brahma (brm) 

Hunchback (hb) gene is a gap gene which encodes a 

zinc-finger-containing transcription factor important 

for axial patterning in a number of insects; brahma 

(brm) gene obtains maternal and zygotic functions, 

Brm is an ATP-dependent remodeling enzyme of the 

SWI2/SNF2 family associated with nucleosome 

remodeling that is essential for regulated gene 

expression 

Impacts the population of 

larval progeny of exposed 

WCR adults; total oviposition 

was not significantly affected 

but complete absence of 

hatching in the eggs was 

reported – potential pRNAi 

effect  

Khajuria et al. (2015) 
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dvssj1 

dvssj2 

Encode membrane proteins associated with smooth 

separate junctions (SSJ) which are required for 

intestinal barrier function 

Loss of the midgut epithelium, 

larval growth inhibition, larval 

mortality 

Hu et al. (2016) 

dvvgr 

dvbol 

Essential reproductive genes; expressed in ovarian 

tissue and involved in sperm maturation division 

respectively 

Exposure of adult WCR and 

larvae caused reduction of 

fecundity 

Niu et al. (2017) 
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4.3. Registration process 

Monsanto Company was first to develop and register transgenic maize, MON 87411, which 

targets Snf7 gene stacked on cry3Bb1 gene under the name SmartStax PRO. The DvSnf7 RNA 

expressed in MON 87411 is composed of 968 nucleotide sequence containing 240 base pair 

dsRNA component plus the addition of a poly A tail (Urquhart et al., 2015). Upon consumption, 

the plant-produced dsRNA in MON 87411 is specifically recognized by the RNA interference 

machinery of WCR and other closely related CRW species, resulting in downregulation of the 

targeted DvSnf7 gene and leading to mortality (Bolognesi et al., 2012, Koči et al., 2014). Studies 

demonstrated that cross-resistance between DvSnf7 and Cry3Bb1 is unlikely (Moar et al., 2017). 

In addition, incorporation of multiple modes of action against CRW by pyramiding Bt and RNA-

based traits will offer increased efficacy and durability of a product while maintaining a high 

degree of specificity for the target pest and environmental safety (Baum and Roberts, 2014). 

Ecological risk assessment (ERA) is the main step in the registration of transgenic plants and 

PIPs. ERA of transgenic plants is designed to determine potential risks of introducing genetically 

engineered plants into the environment and include problem formulation, analysis, and risk 

characterization (US EPA, 1998). Assessment of potential ecological impacts, associated with 

the introduction of a PIP, is based on the characteristics of the crop and the introduced trait 

(Bachman et al., 2016). Risk assessment continuum based on tiered approach starts with 

laboratory research of worst-case scenario, continues with extended lab/semi-field research 

and finishes with field research (Figure 4.1.). Ecological complexity, realistic exposure and 

comprehensiveness of ERA increase in each step of risk assessment continuum. 

In 2017, US EPA (US EPA, 2017b) published ERA for a registration of MON 89034 x TC1507 x 

MON 87411 x DAS-59122-7 combined trait corn (SmartStax PRO) expressing Bt insecticidal 

proteins, and DvSnf7 dsRNA submitted by Monsanto Company based on previously developed 

problem formulation. The goal of risk assessment was to determine (1) human risks and 

toxicology, (2) exposure and environmental fate of DvSnf7 dsRNA, (3) non-target toxicity, (3) 

possibility of synergism between DvSnf7 dsRNA and Cry proteins.  They concluded that (1) No 
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Observed Adverse Effect Level (NOAEL) and Lowest Observed Adverse Effect Level (LOAEL) 

showed no significant toxicity and that, based on literature, exogenous dsRNAi will not be taken 

up as intact molecules in mammals (US EPA, 2017b) (2) exposure in terrestrial environment is 

limited to organisms which directly feed on dsRNA-producing plant material and can be 

extended to organisms which feed on herbivorous arthropods (secondary exposure), (3) 

exposure do DvSnf7 dsRNA in aquatic environments is expected to be minimal due to low 

persistence, (4) synergism between DvSnf7 dsRNA and the Cry proteins expressed in SmartStax 

PRO does not occur. Other studies have also confirmed that DvSnf7 dsRNA has no impact on 

human and mammalian health and that adverse impact on non-target organisms is relatively 

low.  

 

 

Figure 4.1.: Risk assessment continuum. Power indicates the ability to evaluate negative effects. 

Source (Romeis et al., 2011) 

 

Petrick et al. (2016) claim that RNAi and dsRNA molecules, naturally occurring in eukaryotes, 

are present in plants and animals and have a substantial history of safe consumption. This safe 

consumption is remarkable since commonly consumed foods such as maize, soybean, rice, 
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lettuce, and tomatoes contain both short (e.g. small interfering RNAs (siRNAs) and microRNAs) 

and long dsRNAs encoding short RNAs with perfect sequence identity to human and 

mammalian genes (Ivashuta et al., 2009, Jensen et al., 2013). The safety of ingested nucleic 

acids, including RNA, is well understood from several perspectives, including the simple fact 

that humans consume significant amounts of RNA with every meal of plant and animal-derived 

ingredients (Jonas et al., 2001). This is due to effective biological barriers against exogenous 

RNAs which cause degradation of dsRNA. The efficacy of biological barriers against ingested 

dietary RNAs in vivo is demonstrated by feeding studies with plant-derived materials/foods 

and/or dsRNAs (Dickinson et al., 2013, Petrick et al., 2015, Snow et al., 2013, Witwer and 

Hirschi, 2014, Witwer et al., 2013). Petrick et al. (2016) evaluated the potential toxicity to 

mammals of DvSnf7 RNA using toxicology study in mice at doses of 1, 10 and 100 mg/kg body 

weight. The results demonstrated the safety of DvSnf7 RNA expressed in MON 87411 since 

there was no toxicity observed and subsequently the No Observed Adverse Effect Level 

(NOAEL) was determined to be 100 mg/kg.  

Additionally, Bachman et al. (2016) developed and evaluated ecological risk assessment for 

DvSnf7 RNA against WCR. The ERA problem formulation for MON 87411 was based on the 

biology and familiarity with the crop and the trait, the mode of action (MOA), the spectrum of 

activity, the tissue-specific expression profile, routes of exposure for ecological receptors and 

an assessment of potential persistence in the environment. Laboratory tests evaluated 

ecologically relevant endpoints such as survival, growth, development, and reproduction of 

non-target organisms (NTO’s) since the protection goal is to maintain the ecological functions, 

namely, pollination, predation and parasitism, decomposition of soil organic material, and soil 

nutrient cycling. Testing required laboratory toxicity testing on individual species and placing 

the results into the context of ERA. All margins of exposure for NTOs were > 10-fold the 

maximum expected environmental concentration. They concluded that unintended effects in 

non-target organisms from immune stimulation and RNA machinery saturation are extremely 

unlikely to result from relatively low exposure to dsRNA resulting from cultivation of MON 

87411. 
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Although no RNAi-based GM crops are registered in Europe to this date, the European Food 

Safety Authority (EFSA) reviewed risk assessment of RNAi. EFSA determined whether existing 

approaches for risk assessment are appropriate (EFSA, 2014), commissioned separate external 

scientific reports in which relevant scientific literature has been reviewed to inform human and 

environmental risks of RNAi-based GM plants (Paces et al., 2017, Christiaens et al., 2018), and 

developed a strategy for identification and assessment of plant non-target effects in RNAi-

based GM plants (EFSA GMO Panel, 2018). Even though EFSA has not yet developed ERA plant 

for in-planta expressed dsRNA-based pesticides, the US EPA framework for ERA of dsRNA will 

largely help in RNAi-based pesticides registration in EU.  

4.4. Future aspects  

The successful demonstration of transgenic dsRNA to provide corn root protection against WCR 

feeding damage has catalyzed industry-wide interest in RNAi as a novel mode of action to 

combine with Bt technology to reduce the probability of field-evolved resistance to currently 

marketed traits (Fishilevich et al., 2016). Products that utilize the RNAi mode of action have the 

potential to offer new and complementary insect, bacteria, fungal, viral, and weed control 

solutions that have a degree of potency and selectivity beyond what has been possible to date 

using conventional pesticides (Sherman et al., 2015). The main advantages of RNAi-based 

pesticides are their selectivity for specific target species, and a possibility to control resistant 

populations. Head et al. (2017) evaluated the performance of SmartStax (which contains only Bt 

traits) and SmartStaxPRO in preventing root injury, estimated the reduction in adult beetle 

emergence, and compared the durability of SmartStax and SmartStaxPRO with 5% seed blend 

refuge, based on the trials conducted by Monsanto and Dow AgroSciences on naturally infested 

grower maize fields selected to challenge CRW products. They provided evidence that the 

addition of DvSnf7 in SmartStax PRO can reduce maize root damage compared to SmartStax 

(which contains only Bt traits) and prolong the durability of CryBb1 and Cry34Ab1/Cry35Ab1.  

Nevertheless, several key uncertainties remain that represent potential hurdles to realizing the  

widespread commercial application of RNAi as a mode of action to pyramid with traits based on 
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Bt proteins: (1) RNAi trait performance over multiple field seasons and commercial hybrid yield 

potential has to be reported (Fishilevich et al., 2016), (2) the regulatory framework to assess 

safety of dsRNA insecticidal traits may differ in certain regards from that established for Bt-

based insecticidal traits (Fishilevich et al., 2016) and (3) dsRNA environmental fate in soil; 

concentrations in soil during the growing season and after the harvest.  

All in all, first field results of dsRNA transgenic maize have proved RNAi technology to be 

efficacious and reliable. Therefore, it is to be expected that more RNAi-based pesticides will be 

developed, registered and marketed in the near future. The delivery of products that utilize the 

RNAi mode of action as a biocontrol may occur as a spray, drench or granular application 

(Sherman et al., 2015), although they are more likely to be marketed as plant-incorporated 

protectants (PIP’s). Also, the registration process for RNAi products is very similar as for GM 

crops which will make it easier to register RNAi-based pesticides because of the preexisting 

framework. 
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5. Conclusions 

1. RNA interference is a novel technology which has emerged as the most promising tool for 

control of economically important pests such as Western corn rootworm.  

2. RNA interference can be efficiently applied in pest control by autonomous uptake (feeding) 

of dsRNA supplied in transgenic plants engineered to express specific nucleotide sequence 

which results in knockdown of genes in target pest, or by topical application of dsRNA on soil 

and leaves. The application results in the mortality of both larvae and adult pests and reduction 

of pest damage.  

3. Western corn rootworm is the most important economic pest of continuous maize 

cultivation which causes great damage to maize roots, pollination, and grain yield. It is very 

difficult to manage since it shows great ability to adjust to adverse conditions such as crop 

rotation, chemical pesticide application, and biotechnological control (Bt maize).  

4. Many of the recent reports have confirmed a great efficiency of RNA interference in plant 

protection against Western corn rootworm adults and larvae with a range of genes which can 

be effectively targeted and result in larval stunting, larval and adult mortality or reduction of 

fecundity. As for now, there are four RNAi PIP product approved by the US EPA called 

SMARTSTAX PRO which combine Bt traits and DvSnf7 dsRNA, designed to manage Western corn 

rootworm in maize fields.  

5. Advantages of using RNA interference are its specificity based on precise nucleotide-

sequence identity which is targeted, high potency of RNA interference based plant-

incorporated protectant products, and the possibility to control resistant populations or impede 

their development.  

6. There are still some environmental concerns regarding the use of RNA interference products 

due to lack of field experiments, non-target exposure information, uncertainties of dsRNA 

distribution in the environment and need for appropriate environmental risk assessment design 

for registration of RNA interference plant-incorporated products. 
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7. In order to achieve adequate crop protection without compromising environmental safety, it 

is necessary to carefully assess risks of extensive application of RNA interference-based 

products during the multiple seasons and establish a regulatory framework for evaluating the 

safety of dsRNA insecticidal traits in transgenic RNAi crops.  
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